首页> 外文期刊>Journal of power sources >An Improved Electrochemical Model For The Nh_3 Fed Proton Conducting Solid Oxide Fuel Cells At Intermediate Temperatures
【24h】

An Improved Electrochemical Model For The Nh_3 Fed Proton Conducting Solid Oxide Fuel Cells At Intermediate Temperatures

机译:中温下Nh_3质子传导固体氧化物燃料电池电化学模型的改进

获取原文
获取原文并翻译 | 示例
       

摘要

An improved electrochemical model is developed to study the ammonia fed solid oxide fuel cell based on proton conducting electrolyte (SOFC-H). Including the chemical reaction kinetics of NH_3 catalytic thermal decomposition, the present model can be used to predict the performance of the NH_3 fed SOFC-H at an intermediate temperature (i.e. 773 K). Comparison between the simulation results using the present model and experimental data from literature validates the accuracy of this model. Parametrical analyses reveal that at a high operating temperature (i.e. 1073 K), the NH3 fuel is completely decomposed to H_2 and N_2 within a very thin layer (30 μm) near the anode surface of an SOFC-H. It is also found that operating the NH_3 fed SOFC-H at an intermediate temperature of 773 K is feasible due to sufficiently high rate of NH_3 decomposition. However, further decreasing the temperature to 673 K is not recommended as less than 10% NH_3 fuel can be decomposed to H_2 and N_2 in the SOFC-H. The effects of current density and electrode microstructure on the performance of the NH_3 fed SOFC-H are also studied. It is found that increasing electrode porosity and pore size is beneficial to increase the partial pressure of H_2 at the anode-electrolyte interface. The model developed in this paper can be extended to 2D or 3D models to study practical tubular or planar SOFCs.
机译:建立了改进的电化学模型,以研究基于质子传导电解质(SOFC-H)的加氨固体氧化物燃料电池。包括NH_3催化热分解的化学反应动力学在内,本模型可用于预测在中间温度(即773 K)下进料的SOFC-H NH_3的性能。使用本模型的仿真结果与来自文献的实验数据之间的比较证实了该模型的准确性。参数分析表明,在较高的工作温度(即1073 K)下,NH3燃料会在SOFC-H阳极表面附近的非常薄的一层(30μm)内完全分解为H_2和N_2。还发现由于足够高的NH 3分解速率,在773 K的中间温度下操作供给NH 3的SOFC-H是可行的。但是,不建议将温度进一步降低到673 K,因为在SOFC-H中,少于10%的NH_3燃料会分解为H_2和N_2。还研究了电流密度和电极微观结构对NH_3进料的SOFC-H性能的影响。发现增加电极孔隙率和孔径有利于增加阳极-电解质界面处的H_2分压。本文开发的模型可以扩展到2D或3D模型,以研究实用的管状或平面SOFC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号