首页> 外文期刊>Journal of power sources >A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell
【24h】

A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell

机译:具有晶体石墨核和非晶碳壳的高性能三元硅复合阳极材料

获取原文
获取原文并翻译 | 示例
       

摘要

Si is a promising anode material for lithium-ion batteries, but suffers from sophisticated engineering structures and complex fabrication processes that pose challenges for commercial application. Herein, a ternary Si/graphite/pyrolytic carbon (SiGC) anode material with a structure of crystal core and amorphous shell using low-cost raw materials is developed. In this ternary SiGC composite, Si component exists as nanoparticles and is spread on the surface of the core graphite flakes while the sucrose-derived pyrolytic carbon further covers the graphite/Si components as the amorphous shell. With this structure, Si together with the graphite contributes to the high specific capacity of this Si ternary material. Also the graphite serves as the supporting and conducting matrix and the amorphous shell carbon could accommodate the volume change effect of Si, reinforces the integrity of the composite architecture, and prevents the graphite and Si from direct exposing to the electrolyte. The optimized ternary SiGC composite displays high reversible specific capacity of 818 mAh g(-1) at 0.1 A g(-1), initial Coulombic efficiency (CE) over 80%, and excellent cycling stability at 0.5 A g(-1) with 83.6% capacity retention (similar to 610 mAh g(-1)) after 300 cycles.
机译:Si是锂离子电池的有希望的负极材料,但由于其复杂的工程结构和复杂的制造工艺而遭受商业应用的挑战。本文中,开发了使用低成本原材料的具有晶体核和非晶壳结构的三元Si /石墨/热解碳(SiGC)阳极材料。在这种三元SiGC复合材料中,Si组分以纳米颗粒形式存在并散布在核心石墨薄片的表面,而蔗糖衍生的热解碳进一步覆盖了石墨/ Si组分作为非晶壳。通过这种结构,Si与石墨一起有助于该Si三元材料的高比容量。石墨还用作支撑和导电基体,无定形壳碳可以适应Si的体积变化效应,增强了复合结构的完整性,并防止了石墨和Si直接暴露于电解质中。优化的三元SiGC复合材料在0.1 A g(-1)时显示818 mAh g(-1)的高可逆比容量,初始库伦效率(CE)超过80%,在0.5 A g(-1)时具有出色的循环稳定性300次循环后的容量保留率为83.6%(类似于610 mAh g(-1))。

著录项

  • 来源
    《Journal of power sources》 |2018年第30期|328-333|共6页
  • 作者单位

    Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China;

    Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China;

    Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat iChEM, Coll Chem & Chem Engn,Dept Chem, Xiamen 361005, Peoples R China;

    Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China;

    Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China;

    Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China;

    Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China;

    Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat iChEM, Coll Chem & Chem Engn,Dept Chem, Xiamen 361005, Peoples R China;

    Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lithium ion battery; Si; Ternary composite; Anode material; Industry process;

    机译:锂离子电池;硅;三元复合材料;负极材料;工业工艺;
  • 入库时间 2022-08-18 00:21:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号