首页> 外文期刊>Journal of power sources >Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor
【24h】

Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

机译:高性能超级电容器互连钨青铜纳米片的电化学制备

获取原文
获取原文并翻译 | 示例
       

摘要

Interconnected H0.12WO3 center dot H2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm(-2) (495.8 F g(-1)) at 2 mA cm(-2). Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm(-2). Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm(-3) at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.
机译:采用限电位脉冲恒电流法(PLPG)在部分片状石墨基底(Ex-GF)上制备了具有高电化学性能的互连的H0.12WO3中心点H2O纳米片。新颖的互连纳米片结构解决了大容量伪电容材料的死体积问题,在2 mA cm(-2)时可实现5.95 F cm(-2)(495.8 F g(-1))的大比电容。得益于纳米片之间大量空隙建立的流畅的电解质渗透通道,以及直接从石墨基材生长的导电钨青铜中的快速电子传输,所得WO3 / Ex-GF表现出优异的速率能力。当放电电流密度从2 mA增加到100 mA cm(-2)时,该材料可以保持其电容的60.0%。此外,WO3 / Ex-GF在经过5000次恒电流充放电循环后未显示电容衰减,显示出其超级稳定性。此外,使用WO3 / Ex-GF和电化学制备的MnO2 / Ex-GF作为负极和正极组装而成的高性能非对称超级电容器在功率密度为11.1 mW时分别显示出2.88 mWh cm(-3)的高能量密度。 cm-3,表明其在能量存储方面的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号