首页> 外文期刊>Journal of power sources >La_(0.8)Sr_(0.2)Co_(0.8)Ni_(0.2)O_(3-δ) impregnated oxygen electrode for H_2O/CO_2 co-electrolysis in solid oxide electrolysis cells
【24h】

La_(0.8)Sr_(0.2)Co_(0.8)Ni_(0.2)O_(3-δ) impregnated oxygen electrode for H_2O/CO_2 co-electrolysis in solid oxide electrolysis cells

机译:用于固体氧化物电解池中H_2O / CO_2共电解的La_(0.8)Sr_(0.2)Co_(0.8)Ni_(0.2)O_(3-δ)浸渍氧电极

获取原文
获取原文并翻译 | 示例
       

摘要

High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3.8 (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)(0.95)MnO3-delta (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm(-2) at 800 degrees C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm(-2) at 1.5 V at 800 degrees C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H-2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.
机译:通过可逆固体氧化物电解池(SOEC)进行的高温H2O / CO2共电解提供了将电能转化为合成气中存储的化学物质的潜在可行且生态友好的方式。在这项工作中,La0.8Sr0.2Co0.8Ni0.2O3.8(LSCN)浸渍的Gd0.1Ce0.9O1.95(GDC)-(La0.8Sr0.2)(0.95)MnO3-δ(LSM)复合氧电极是作为H2O / CO2共电解的高性能电极而被研究。 LSCN浸渍电池在固态氧化物燃料电池(SOFC)模式下在800摄氏度时具有1057 mW cm(-2)的峰值功率密度,具有竞争优势;在共电解模式下,电流密度可以在1.5 V,800摄氏度,H2O / CO2比为2/1的情况下达到1.60 A cm(-2)。通过将LSCN纳米颗粒分散在GDC-LSM的表面上以最大化反应活性位点,LSCN浸渍的电池在SOEC和SOFC模式下均显示出显着增强的电化学性能。详细讨论了进料气组成(H2O-H-2-CO2)和操作电压对共电解性能的影响。该电池表现出非常稳定的性能,并且在超过100小时内没有明显的降解。测试后的表征将通过多次测量进行详细分析。

著录项

  • 来源
    《Journal of power sources》 |2018年第15期|93-101|共9页
  • 作者单位

    Huazhong Univ Sci & Technol, Ctr Puel Cell Innovat, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Ctr Puel Cell Innovat, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Ctr Puel Cell Innovat, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Ctr Puel Cell Innovat, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Ctr Puel Cell Innovat, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Ctr Puel Cell Innovat, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Co-electrolysis; Syngas; Solid oxide electrolysis cell; Oxygen electrode; Impregnation;

    机译:共电解合成气固体氧化物电解槽氧电极浸渍;
  • 入库时间 2022-08-18 00:21:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号