首页> 外文期刊>Journal of power sources >Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution
【24h】

Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution

机译:在三元异质结构中合理构造多个界面,以便在光催化制氢中有效地分离和转移光生载流子

获取原文
获取原文并翻译 | 示例
       

摘要

The design of efficient and stable photocatalyst plays a critical role in the photocatalytic hydrogen evolution from water splitting. Herein, we develop a novel ZnS/CdS/ZnO ternary heterostructure by the in-situ sulfuration of CdS/ZnO, which includes four contact interfaces: CdS-ZnS interface, ZnS-ZnO interface, CdS-ZnO interface and ZnS-CdS-ZnO ternary interface, forming three charge carrier-transfer modes (type-I, type-II and direct Z scheme) through five carrier-transfer pathways. As a result, the separation and transfer of photoexcited electron hole pairs are promoted significantly, resulting in a high hydrogen evolution rate of 44.70 mmol h(-1) g(-1), which is 2, 3.7 and 8 times higher than those of binary heterostructures, CdS/ZnO, CdS/ZnS and ZnS/ZnO, respectively, and 26.5, 280 and 298 times higher than those of single CdS, ZnO and ZnS, respectively. As a counterpart ternary heterostructure, CdS/ZnS/ZnO contains only two interfaces: CdS-ZnS interface and ZnS-ZnO interface, which form two charge carrier-transfer modes (type-I and type-II) through two carrier-transfer pathways, leading to its much lower hydrogen evolution rate (27.25 mmol h(-1) g(-1)) than ZnS/CdS/ZnO ternary heterostructure. This work is relevant for understanding the charge-transfer pathways between multi-interfaces in multicomponent heterojunctions.
机译:高效稳定的光催化剂的设计在水分解产生的光催化氢中起着至关重要的作用。本文中,我们通过原位硫化CdS / ZnO开发了一种新颖的ZnS / CdS / ZnO三元异质结构,包括四个接触界面:CdS-ZnS界面,ZnS-ZnO界面,CdS-ZnO界面和ZnS-CdS-ZnO界面三元界面,通过五个载流子传输路径形成三种电荷载流子传输模式(I型,II型和直接Z方案)。结果,显着促进了光激发电子空穴对的分离和转移,导致氢释放速率高达44.70 mmol h(-1)g(-1),是氢的高2、3.7和8倍。二元异质结构CdS / ZnO,CdS / ZnS和ZnS / ZnO,分别比单一CdS,ZnO和ZnS高26.5、280和298倍。作为对应的三元异质结构,CdS / ZnS / ZnO仅包含两个界面:CdS-ZnS界面和ZnS-ZnO界面,它们通过两个载流子传输路径形成两个电荷载流子传输模式(I型和II型),导致其氢释放速率(Zn./CdS/ZnO三元异质结构)更低(27.25 mmol h(-1)g(-1))。这项工作与了解多组分异质结中多界面之间的电荷转移途径有关。

著录项

  • 来源
    《Journal of power sources》 |2018年第1期|249-260|共12页
  • 作者单位

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Ctr Nanomat Renewable Energy, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Ctr Nanomat Renewable Energy, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Ctr Nanomat Renewable Energy, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Ctr Nanomat Renewable Energy, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, IRCRE, State Key Lab Multiphase Flow Power Engn MFPE, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Ctr Nanomat Renewable Energy, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Ctr Nanomat Renewable Energy, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Ctr Nanomat Renewable Energy, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Photocatalysis; H-2 evolution; Water splitting; Heterostructure; Multiple interfaces; Carrier-transfer pathways;

    机译:光催化;H-2析出;水分解;异质结构;多种界面;载流子传递途径;
  • 入库时间 2022-08-18 00:21:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号