首页> 外文期刊>Journal of power sources >Microwave-assisted reactive sintering and lithium ion conductivity of Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3 solid electrolyte
【24h】

Microwave-assisted reactive sintering and lithium ion conductivity of Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3 solid electrolyte

机译:Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3固体电解质的微波辅助反应烧结及锂离子电导率

获取原文
获取原文并翻译 | 示例
       

摘要

Li1.3Al0.3Ti1.7(PO4)(3) (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (= 1000 degrees C) with long dwelling times (several hours) to achieve high relative density (similar to 90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 degrees C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 x 10(-4) S cm(-1)) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion conducting ceramics in a simple and fast way.
机译:Li1.3Al0.3Ti1.7(PO4)(3)(LATP)材料由TiO6八面体和PO4四面体的三维框架制成,这为Li +离子提供了多个位置。所产生的高离子电导率有望产生用于全固态锂离子电池的电解质。为了制作致密的陶瓷,传统的烧结方法通常使用高温(> = 1000摄氏度)和较长的停留时间(几个小时)来实现较高的相对密度(大约90%)。在这项工作中,提出了一种创新的合成和加工方法。一种称为微波辅助反应烧结的快速简便的加工技术可用于一步合成和烧结具有合适性能的LATP陶瓷。从无定形的致密LATP前体粉末开始,在890摄氏度下仅10分钟即可获得纯净和结晶的LATP陶瓷。尽管相对密度为88%,但在环境温度下(3.15 x 10(-4)S cm(-1))测得的离子电导率是迄今为止报道得最好的离子电导率。对Li +传导活化能的研究证实了使用这种新方法可获得的高质量陶瓷(纯度和结晶度),从而强调了其以简单快速的方式制备离子导电陶瓷的兴趣。

著录项

  • 来源
    《Journal of power sources》 |2018年第28期|48-52|共5页
  • 作者单位

    UPMC Univ Paris 06, Sorbonne Univ, Lab Chim Matiere Condensee Paris, CNRS,Coll France, 4 Pl Jussieu, F-75005 Paris, France;

    UPMC Univ Paris 06, Sorbonne Univ, Lab Chim Matiere Condensee Paris, CNRS,Coll France, 4 Pl Jussieu, F-75005 Paris, France;

    UPMC Univ Paris 06, Sorbonne Univ, Coll France, CNRS,UMR Chim Solide & Energie 8260, 11 Pl Marcelin Berthelot, F-75231 Paris 05, France;

    UPMC Univ Paris 06, Sorbonne Univ, Lab Chim Matiere Condensee Paris, CNRS,Coll France, 4 Pl Jussieu, F-75005 Paris, France;

    EDF R&D, F-77818 Moret Sur Loing, France;

    EDF R&D, F-77818 Moret Sur Loing, France;

    UPMC Univ Paris 06, Sorbonne Univ, Lab Chim Matiere Condensee Paris, CNRS,Coll France, 4 Pl Jussieu, F-75005 Paris, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    NASICON; Microwave; Assisted reactive sintering; Ceramics; Ionic conductivity; Li-ion mechanism;

    机译:NASICON;微波;辅助反应烧结;陶瓷;离子电导率;锂离子机理;
  • 入库时间 2022-08-18 00:21:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号