首页> 外文期刊>Journal of Physical Oceanography >Nonpropagating Form Drag and Turbulence due to Stratified Flow over Large-Scale Abyssal Hill Topography
【24h】

Nonpropagating Form Drag and Turbulence due to Stratified Flow over Large-Scale Abyssal Hill Topography

机译:大规模深海山丘地形上分层流引起的非传播形式阻力和湍流

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Drag and turbulence in steady stratified flows over abyssal hills have been parameterized using linear theory and rates of energy cascade due to wave-wave interactions. Linear theory has no drag or energy loss due to large-scale bathymetry because waves with intrinsic frequency less than the Coriolis frequency are evanescent. Numerical work has tested the theory by high passing the topography and estimating the radiation and turbulence. Adding larger-scale bathymetry that would generate evanescent internal waves generates nonlinear and turbulent flow, driving a dissipation approximately twice that of the radiating waves for the topographic spectrum chosen. This drag is linear in the forcing velocity, in contrast to atmospheric parameterizations that have quadratic drag. Simulations containing both small- and large-scale bathymetry have more dissipation than just adding the large- and small-scale dissipations together, so the scales couple. The large-scale turbulence is localized, generally in the lee of large obstacles. Medium-scale regional models partially resolve the nonpropagating wavenumbers, leading to the question of whether they need the large-scale energy loss to be parameterized. Varying the resolution of the simulations indicates that if the ratio of gridcell height to width is less than the root-mean-square topographic slope, then the dissipation is overestimated in coarse models (by up to 25%); conversely, it can be underestimated by up to a factor of 2 if the ratio is greater. Most regional simulations are likely in the second regime and should have extra drag added to represent the large-scale bathymetry, and the deficit is at least as large as that parameterized for abyssal hills.
机译:利用线性理论和由于波-波相互作用产生的能量级联速率,对深海丘陵上稳定分层流中的阻力和湍流进行了参数化。线性理论没有因大尺度测深法引起的阻力或能量损失,因为固有频率小于科里奥利频率的波是e逝的。数值工作通过高通地形并估计了辐射和湍流来验证了该理论。添加较大的测深法会生成e逝的内部波,从而产生非线性和湍流,从而驱使所选地形图的辐射耗散约为辐射波的两倍。与具有二次阻力的大气参数化相反,这种阻力在强迫速度上是线性的。包含小规模和大尺寸测深的模拟比仅将大尺寸和小尺寸耗散加在一起具有更大的耗散,因此比例成对存在。大范围的湍流通常位于大型障碍物的后部。中型区域模型部分地解决了非传播波数,从而引发了一个问题,即它们是否需要对大型能量损失进行参数化。改变模拟的分辨率表明,如果栅格单元的高度与宽度之比小于均方根地形坡度,则在粗略模型中会高估耗散(最多25%)。相反,如果该比率更大,则可能被低估2倍。大多数区域模拟可能在第二种状态下进行,应该增加额外的阻力来表示大规模测深,赤字至少与深海丘陵参数化的赤字一样大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号