首页> 外文期刊>Journal of Parallel and Distributed Computing >The FLAME approach: From dense linear algebra algorithms to high-performance multi-accelerator implementations
【24h】

The FLAME approach: From dense linear algebra algorithms to high-performance multi-accelerator implementations

机译:FLAME方法:从密集的线性代数算法到高性能的多加速器实现

获取原文
获取原文并翻译 | 示例

摘要

Parallel accelerators are playing an increasingly important role in scientific computing. However, it is perceived that their weakness nowadays is their reduced "programmability" in comparison with traditional general-purpose CPUs. For the domain of dense linear algebra, we demonstrate that this is not necessarily the case. We show how the libf lame library carefully layers routines and abstracts details related to storage and computation, so that extending it to take advantage of multiple accelerators is achievable without introducing platform specific complexity into the library code base. We focus on the experience of the library developer as he develops a library routine for a new operation, reduction of a generalized Hermitian positive definite eigenvalue problem to a standard Hermitian form, and configures the library to target a multi-GPU platform. It becomes obvious that the library developer does not need to know about the parallelization or the details of the multi-accelerator platform. Excellent performance on a system with four NVIDIA Tesla C2050 CPUs is reported. This makes libflame the first library to be released that incorporates multi-GPU functionality for dense matrix computations, setting a new standard for performance.
机译:并行加速器在科学计算中起着越来越重要的作用。但是,人们认为,如今的缺点是与传统的通用CPU相比,“可编程性”降低了。对于稠密线性代数的域,我们证明情况并非一定如此。我们展示了libf lame库如何仔细地对例程进行分层,并抽象出与存储和计算相关的详细信息,从而可以在不将特定于平台的复杂性引入库代码库的情况下扩展它以利用多个加速器。我们将重点放在库开发人员为新操作开发库例程,将广义Hermitian正定特征值问题简化为标准Hermitian形式并将库配置为针对多GPU平台的经验上。显而易见,库开发人员无需了解并行化或多加速器平台的详细信息。据报道,该系统在具有四个NVIDIA Tesla C2050 CPU的系统上具有出色的性能。这使得libflame成为第一个要发布的库,该库包含用于密集矩阵计算的多GPU功能,从而为性能树立了新标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号