首页> 外文期刊>Journal of Parallel and Distributed Computing >PC3: Principal Component-based Context Compression Improving energy efficiency in wireless sensor networks
【24h】

PC3: Principal Component-based Context Compression Improving energy efficiency in wireless sensor networks

机译:PC3:基于主成分的上下文压缩可提高无线传感器网络的能效

获取原文
获取原文并翻译 | 示例

摘要

We focus on energy efficiency, which guarantees the operation of a Wireless Sensor Network for long. We propose a context compression model that works in an orthogonal fashion. We first reduce the dimensions of multivariate contextual information. This is achieved through the Principal Component Analysis (PCA), which determines the statistical dependencies between the different contextual components. We then suppress the transmission of the determined principal components through an extrapolation scheme that exploits the properties of each individual component. Our findings are quite promising for the broader domain of WSN-based application engineering and context awareness.
机译:我们专注于能源效率,这保证了无线传感器网络的长期运行。我们提出了一种以正交方式工作的上下文压缩模型。我们首先减小多元上下文信息的维数。这是通过主成分分析(PCA)实现的,该方法确定了不同上下文成分之间的统计依赖性。然后,我们通过利用每个单独组件属性的外推方案来抑制确定的主要组件的传输。对于基于WSN的应用工程和上下文感知的更广泛领域,我们的发现是很有希望的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号