首页> 外文期刊>Journal of Parallel and Distributed Computing >Design space exploration of on-chip ring interconnection for a CPU-GPU heterogeneous architecture
【24h】

Design space exploration of on-chip ring interconnection for a CPU-GPU heterogeneous architecture

机译:CPU-GPU异构体系结构的片上环形互连的设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

Incorporating a GPU architecture into CMP, which is more efficient with certain types of applications, is a popular architecture trend in recent processors. This heterogeneous mix of architectures will use an on-chip interconnection to access shared resources such as last-level cache tiles and memory controllers. The configuration of this on-chip network will likely have a significant impact on resource distribution, fairness, and overall performance. The heterogeneity of this architecture inevitably exerts different pressures on the interconnection due to the differing characteristics and requirements of applications running on CPU and GPU cores. CPU applications are sensitive to latency, while GPGPU applications require massive bandwidth. This is due to the difference in the thread-level parallelism of the two architectures. GPUs use more threads to hide the effect of memory latency but require massive bandwidth to supply those threads. On the other hand, CPU cores typically running only one or two threads concurrently are very sensitive to latency. This study surveys the impact and behavior of the interconnection network when CPU and GPGPU applications run simultaneously. Among our findings, we observed that significant interference exists between CPU and GPU applications and resource partitioning, in particular virtual and physical channel partitioning, shows effectiveness to solve the interference problem. Also, heterogeneous link configurations show promising results by optimizing traffic hotspots in the network. Finally, we evaluated different placement policies and found that how to place different components in the network significantly affects the performance. Based on these findings, we suggest an optimal ring interconnect network. Our study will shed light on other architectural interconnection studies on CPU-GPU heterogeneous architectures.
机译:在最近的处理器中,将GPU架构集成到CMP中(对于某些类型的应用程序更有效)是一种流行的架构趋势。架构的这种异构混合将使用片上互连来访问共享资源,例如最后一级的缓存切片和内存控制器。该片上网络的配置可能会对资源分配,公平性和整体性能产生重大影响。由于在CPU和GPU内核上运行的应用程序的特性和要求不同,因此该体系结构的异构性不可避免地会对互连施加不同的压力。 CPU应用程序对延迟敏感,而GPGPU应用程序需要大量带宽。这是由于两种体系结构的线程级并行性不同。 GPU使用更多线程来隐藏内存延迟的影响,但需要大量带宽才能提供这些线程。另一方面,通常仅同时运行一个或两个线程的CPU内核对延迟非常敏感。本研究调查了CPU和GPGPU应用程序同时运行时互连网络的影响和行为。在我们的发现中,我们观察到CPU和GPU应用程序之间存在显着干扰,并且资源分区(尤其是虚拟和物理通道分区)显示出解决干扰问题的有效性。同样,异构链路配置通过优化网络中的流量热点显示出令人鼓舞的结果。最后,我们评估了不同的放置策略,发现如何在网络中放置不同的组件会显着影响性能。基于这些发现,我们建议一种最佳的环形互连网络。我们的研究将为CPU-GPU异构体系结构的其他体系结构互连研究提供启发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号