首页> 外文期刊>Journal of Parallel and Distributed Computing >Parallel globally optimal structure learning of Bayesian networks
【24h】

Parallel globally optimal structure learning of Bayesian networks

机译:贝叶斯网络的并行全局最优结构学习

获取原文
获取原文并翻译 | 示例

摘要

Given n random variables and a set of m observations of each of the n variables, the Bayesian network structure learning problem is to learn a directed acyclic graph (DAG) on the n variables such that the implied joint probability distribution best explains the set of observations. Bayesian networks are widely used in many fields including data mining and computational biology. Globally optimal (exact) structure learning of Bayesian networks takes 0(n~2 • 2~n) time plus the cost of 0(n • 2~n) evaluations of an application-specific scoring function whose run-time is at least linear in m. In this paper, we present a parallel algorithm for exact structure learning of a Bayesian network that is communication-efficient and work-optimal up to 0 (1 • 2~n) processors. We further extend this algorithm to the important restricted case of structure learning with bounded node in-degree and investigate the performance gains achievable because of limiting node in-degree. We demonstrate the applicability of our method by implementation on an IBM Blue Gene/P system and an AMD Opteron InfiniBand cluster and present experimental results that characterize run-time behavior with respect to the number of variables, number of observations, and the bound on in-degree.
机译:给定n个随机变量和n个变量中每一个的m个观察值集合,贝叶斯网络结构学习问题是学习n个变量上的有向无环图(DAG),以便隐式联合概率分布可以最好地解释该观察值集合。贝叶斯网络广泛用于许多领域,包括数据挖掘和计算生物学。贝叶斯网络的全局最优(精确)结构学习需要0(n〜2•2〜n)时间加上0(n•2〜n)评估运行时间至少是线性的特定评分函数的成本在米在本文中,我们提出了一种并行算法,用于贝叶斯网络的精确结构学习,该算法具有通信效率高且工作优化(最多0(1 / n•2〜n)个处理器)。我们进一步将该算法扩展到具有结点内向度的结构学习的重要受限情况,并研究由于结点内向度受限而可获得的性能提升。通过在IBM Blue Gene / P系统和AMD Opteron InfiniBand集群上实施,我们证明了该方法的适用性,并提供了实验结果,这些实验结果针对变量数量,观察值数量以及在-学位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号