首页> 外文期刊>Journal of Parallel and Distributed Computing >Self-scaling cooperative discovery of service compositions in unstructured P2P networks
【24h】

Self-scaling cooperative discovery of service compositions in unstructured P2P networks

机译:非结构化P2P网络中服务组合的自扩展协作发现

获取原文
获取原文并翻译 | 示例

摘要

We propose an efficient technique for improving the performance of automatic and cooperative compositions in unstructured Peer-to-Peer networks during service discovery. The technique exploits a probabilistic forwarding algorithm that uses different sources of knowledge, such as network density and service grouping, to reduce the amount of messages exchanged in the network. The technique, analysed in several network configurations by using a simulator to observe resolution time, recall and message overhead, presents good performance especially in dense and large-scale service networks. To further improve performance and effectiveness of service discovery, we propose a bidirectional search strategy for distributed service composition. It enables concurrent searches over the Peer-to-Peer network exploring the service space in two search directions, hence reducing the response time when solutions are present; in case the requests for a service cannot be completely satisfied, discovered partial solutions may be analysed to identify service gaps that suggest future service implementations and consequently new opportunities for service providers. This technique further reduces the time for discovering compositions, highlighting only a limited increment, when compared with the unidirectional search, of the number of messages exchanged.
机译:我们提出了一种有效的技术,用于在服务发现过程中提高非结构化对等网络中自动协作组合的性能。该技术利用了概率转发算法,该算法使用不同的知识来源(例如网络密度和服务分组)来减少网络中交换的消息量。通过使用模拟器观察解析时间,召回率和消息开销,该技术在几种网络配置中进行了分析,尤其在密集和大规模服务网络中表现出良好的性能。为了进一步提高服务发现的性能和有效性,我们提出了一种用于分布式服务组合的双向搜索策略。它允许在对等网络上并发搜索,从而在两个搜索方向上探索服务空间,从而减少了解决方案出现时的响应时间;如果对服务的要求不能完全得到满足,可以对发现的部分解决方案进行分析,以识别建议未来服务实现的服务差距,从而为服务提供商带来新的机遇。与单向搜索相比,此技术还减少了发现内容的时间,仅突出显示了交换消息数量的有限增量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号