首页> 外文期刊>Journal of Parallel and Distributed Computing >IPACS: Power-aware covering sets for energy proportionality and performance in data parallel computing clusters
【24h】

IPACS: Power-aware covering sets for energy proportionality and performance in data parallel computing clusters

机译:IPACS:功率感知覆盖集,用于数据并行计算集群中的能量比例和性能

获取原文
获取原文并翻译 | 示例

摘要

Energy consumption in datacenters has recently become a major concern due to the rising operational costs and scalability issues. Recent solutions to this problem propose the principle of energy proportionality, i.e., the amount of energy consumed by the server nodes must be proportional to the amount of work performed. For data parallelism and fault tolerance purposes, most common file systems used in MapReduce-type clusters maintain a set of replicas for each data block. A covering subset is a group of nodes that together contain at least one replica of the data blocks needed for performing computing tasks. In this work, we develop and analyze algorithms to maintain energy proportionality by discovering a covering subset that minimizes energy consumption while placing the remaining nodes in low-power standby mode in a data parallel computing cluster. Our algorithms can also discover covering subset in heterogeneous computing environments. In order to allow more data parallelism, we generalize our algorithms so that it can discover k-covering subset, i.e., a set of nodes that contain at least k replicas of the data blocks. Our experimental results show that we can achieve substantial energy saving without significant performance loss in diverse cluster configurations and working environments.
机译:由于运营成本上升和可扩展性问题,数据中心的能耗最近已成为主要问题。该问题的最新解决方案提出了能量比例原理,即服务器节点消耗的能量量必须与执行的工作量成比例。出于数据并行性和容错目的,MapReduce类型群集中使用的大多数常见文件系统为每个数据块维护一组副本。覆盖子集是一组节点,这些节点一起包含执行计算任务所需的数据块的至少一个副本。在这项工作中,我们通过发现一个覆盖子集来开发和分析算法,以维护能量比例,该子集可以最大程度地降低能耗,同时将其余节点置于数据并行计算集群中的低功耗待机模式。我们的算法还可以发现异构计算环境中的覆盖子集。为了允许更多的数据并行性,我们对算法进行了概括,以便它可以发现k个覆盖子集,即包含至少k个数据块副本的一组节点。我们的实验结果表明,在不同的群集配置和工作环境中,我们可以节省大量能源,而不会造成明显的性能损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号