首页> 外文期刊>Journal of Parallel and Distributed Computing >Secure and controllable k-NN query over encrypted cloud data with key confidentiality
【24h】

Secure and controllable k-NN query over encrypted cloud data with key confidentiality

机译:通过密钥机密性对加密的云数据进行安全可控的k-NN查询

获取原文
获取原文并翻译 | 示例

摘要

To enjoy the advantages of cloud service while preserving security and privacy, huge data are increasingly outsourced to cloud in encrypted form. Unfortunately, most conventional encryption schemes cannot smoothly support encrypted data analysis and processing. As a significant topic, several schemes have been recently proposed to securely compute k-nearest neighbors (k-NN) on encrypted data being outsourced to cloud server (CS). However, most existing k-NN search methods assume query users (QUs) are fully-trusted and know the key of data owner (DO) to encrypt/decrypt outsourced database. It is not realistic in many situations. In this paper, we propose a new secure k-NN query scheme on encrypted cloud data. Our approach simultaneously achieves: (1) data privacy against CS: the encrypted database can resist potential attacks of CS, (2) key confidentiality against QUs: to avoid the problems caused by key-sharing, QUs cannot learn DO's key, (3) query privacy against CS and DO: the privacy of query points is preserved as well, (4) query controllability: QUs cannot launch a feasible k-NN query for any new point without approval of DO. We provide theoretical guarantees for security and privacy properties, and show the efficiency of our scheme through extensive experiments.
机译:为了在保持安全性和隐私性的同时享受云服务的优势,越来越多的海量数据以加密形式外包给云。不幸的是,大多数传统的加密方案无法平稳地支持加密的数据分析和处理。作为一个重要的话题,最近提出了几种方案来安全地计算外包给云服务器(CS)的加密数据的k最近邻(k-NN)。但是,大多数现有的k-NN搜索方法都假定查询用户(QU)是完全可信的,并且知道数据所有者(DO)的密钥来加密/解密外包数据库。在许多情况下这是不现实的。在本文中,我们提出了一种针对加密云数据的新型安全k-NN查询方案。我们的方法可以同时实现:(1)针对CS的数据隐私:加密的数据库可以抵抗CS的潜在攻击,(2)针对QU的密钥机密性:为避免密钥共享引起的问题,QU无法学习DO的密钥,(3)针对CS和DO的查询隐私:查询点的隐私也得到保留,(4)查询可控性:未经DO的批准,QU无法为任何新点启动可行的k-NN查询。我们为安全性和隐私属性提供了理论上的保证,并通过广泛的实验证明了我们方案的有效性。

著录项

  • 来源
  • 作者单位

    College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China,Institute of Mathematics for Industry, Kyushu University, Fukuoka, 819-0395, Japan;

    College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China;

    Institute of Mathematics for Industry, Kyushu University, Fukuoka, 819-0395, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; Privacy; k-nearest neighbors; Query;

    机译:云计算;隐私;k近邻;询问;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号