首页> 外文期刊>Journal of Parallel and Distributed Computing >An Optimized trust model integrated with linear features for cyber-enabled recommendation services
【24h】

An Optimized trust model integrated with linear features for cyber-enabled recommendation services

机译:与线性功能集成的优化信任模型,用于网络化推荐服务

获取原文
获取原文并翻译 | 示例

摘要

The growth of cyberspace brings more information to service recommendation. The scores of item are used in most of the recommendation algorithms, but the attributes of users and items are rarely involved in trust recommendation in cyberspace. Both the rating features and attribute information are important for trust recommendation results. In this paper, we combine the heterogeneous information in cyberspace and propose a novel trust recommendation model based on the latent factor model and trusty neighborhood fitting model. We utilize the feature based Latent Factor Model and study the linear features integrated model To solve the failure problem of the latent factor model in the integrated model under the cold-start situations, we propose two optimized methods, which contain the filling method based on feature similarity and the filling method based on feature regression through mapping attributes to features. Experimental results show that the improved method outperforms traditional collaborative recommendation in terms of recommendation accuracy. Meanwhile, our proposed method has been verified to free from the impact of the cold-start problem.
机译:网络空间的增长为服务推荐带来了更多信息。项目的分数在大多数推荐算法中都使用,但是用户和项目的属性很少涉及网络空间中的信任推荐。评级功能和属性信息对于信任推荐结果都很重要。本文结合网络空间中的异构信息,提出了基于潜在因子模型和可信赖邻域拟合模型的新型信任推荐模型。我们利用基于特征的潜在因子模型并研究线性特征集成模型,为解决冷启动条件下集成模型中潜在因子模型的失效问题,提出了两种优化方法,其中包括基于特征的填充方法通过将属性映射到特征基于特征回归的相似性和填充方法。实验结果表明,改进后的方法在推荐精度上优于传统的协同推荐。同时,我们提出的方法已经过验证,不受冷启动问题的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号