首页> 外文期刊>Journal of Parallel and Distributed Computing >Fast auto-clean CNN model for online prediction of food materials
【24h】

Fast auto-clean CNN model for online prediction of food materials

机译:用于食品原料在线预测的快速自动清洁CNN模型

获取原文
获取原文并翻译 | 示例

摘要

Online food image detection is a key issue for intelligent food materials receiving and food supply chain applications, how to efficiently, accurately and quickly detect the image of food materials is a challenging research topic. A fast auto-clean convolutional neural network (CNN) model for online prediction of food materials is proposed, which is aiming at problems of the complex characteristics of the food images such as the complexity of the food materials, the focus of the dislocation and the uniformity of illumination. Firstly, a new approach of the auto-clean CNN models is proposed for automatic image cleaning and classification, which starting from original images and ending with multi-class prediction of clean images. Given a vocabulary ofKclasses, and aYes/Noclean label, two CNN models will learn a class label and a clean label respectively. Secondly, after the forward pass of two CNN models, the joint features generated from the last convolutional layers will be fed into our two loss layers. Combined with multi-class classification method, it classifies and optimizes the image dataset intelligently. Finally, an online prediction algorithm is proposed to improve the image recognition efficiency. Experimental results show that the proposed model and algorithm have good efficiency and accuracy, and the results of this study have significance to optimize the efficiency of the food supply chain industry and food quality evaluation.
机译:在线食品图像检测是智能食品原料接收和食品供应链应用中的关键问题,如何有效,准确,快速地检测食品原料图像是具有挑战性的研究课题。提出了一种快速自动清洁卷积神经网络(CNN)的食品原料在线预测模型,针对食品原料的复杂性,食品的易位性,食品的易位性等问题。照明的均匀性。首先,提出了一种自动清洁CNN模型的新方法,用于图像的自动清洁和分类,该方法从原始图像开始,以清洁图像的多类预测结束。给定K类的词汇表和aYes / Noclean标签,两个CNN模型将分别学习一个类标签和一个干净标签。其次,在两个CNN模型正向传递之后,从最后一个卷积层生成的联合特征将被馈送到我们的两个损失层。结合多类分类方法,对图像数据集进行智能分类和优化。最后,提出了一种在线预测算法以提高图像识别效率。实验结果表明,所提出的模型和算法具有良好的效率和准确性,研究结果对优化食品供应链产业效率和食品质量评价具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号