首页> 外文期刊>Journal of Parallel and Distributed Computing >VAYU: Accelerating stream processing applications through dynamic network-aware topology re-optimization
【24h】

VAYU: Accelerating stream processing applications through dynamic network-aware topology re-optimization

机译:VAYU:通过动态感知网络的拓扑重新优化来加速流处理应用程序

获取原文
获取原文并翻译 | 示例

摘要

Stream processing applications for online analytics are commonly used in domains ranging from sensor data processing to social networking. To achieve high-throughput, stream processing engines support pipelined execution, low-overhead fault-tolerance, and efficient group communication overlays. The throughput of pipelined application workflows is significantly impacted by dynamic system state. In particular, we show that a single bottleneck in the pipeline (congested link or an overloaded operator) can drastically impact the system throughput. In this paper, we present a number of techniques for addressing bottlenecks in stream engines. Our techniques fall into two major classes - network-aware routing for fine grained control of streams; and dynamic overlay generation for optimizing performance of group communication operations. To enable fast workflow re-optimization, we present a light-weight protocol for consistent modification of pipelines. We present detailed algorithms, their implementation in a real system, and address issues of fault tolerance and performance. We evaluate performance of the proposed techniques in the context of three real applications. We show that our techniques improve performance by 20% to 200%, under various overheads, relative to a baseline representative of current implementations. We demonstrate that our techniques are robust to highly dynamic state, as well as complex congestion patterns. Given the widespread use of streaming systems and the need for dealing with dynamic system state, our techniques represent a significant and practical improvement.
机译:在线分析的流处理应用程序通常用于从传感器数据处理到社交网络的领域。为了实现高吞吐量,流处理引擎支持流水线执行,低开销的容错和有效的组通信覆盖。流水线式应用程序工作流的吞吐量受动态系统状态的影响很大。特别是,我们表明,管道中的单个瓶颈(拥塞的链路或操作员过载)会严重影响系统吞吐量。在本文中,我们提出了许多解决流引擎瓶颈的技术。我们的技术分为两大类-用于细粒度控制流的网络感知路由;动态叠加生成,以优化组通信操作的性能。为了实现快速的工作流程重新优化,我们提出了一种轻量级的协议,用于对管道进行一致的修改。我们提出了详细的算法,它们在实际系统中的实现,并解决了容错和性能问题。我们在三个实际应用程序的上下文中评估提出的技术的性能。我们表明,相对于代表当前实现的基线,在各种开销下,我们的技术可以将性能提高20%至200%。我们证明了我们的技术对于高度动态的状态以及复杂的拥塞模式均具有鲁棒性。考虑到流系统的广泛使用以及处理动态系统状态的需求,我们的技术代表了重大而实用的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号