首页> 外文期刊>Journal of Parallel and Distributed Computing >Communication optimization strategies for distributed deep neural network training: A survey
【24h】

Communication optimization strategies for distributed deep neural network training: A survey

机译:分布式深度神经网络培训的通信优化策略:调查

获取原文
获取原文并翻译 | 示例

摘要

Recent trends in high-performance computing and deep learning have led to the proliteration of studies on large-scale deep neural network training. However, the frequent communication requirements among computation nodes drastically slow the overall training speeds, which causes bottlenecks in distributed training, particularly in clusters with limited network bandwidths. To mitigate the drawbacks of distributed communications, researchers have proposed various optimization strategies. In this paper, we provide a comprehensive survey of communication strategies from both an algorithm viewpoint and a computer network perspective. Algorithm optimizations focus on reducing the communication volumes used in distributed training, while network optimizations focus on accelerating the communications between distributed devices. At the algorithm level, we describe how to reduce the number of communication rounds and transmitted bits per round. In addition, we elucidate how to overlap computation and communication. At the network level, we discuss the effects caused by network infrastructures, including logical communication schemes and network protocols. Finally, we extrapolate the potential future challenges and new research directions to accelerate communications for distributed deep neural network training.
机译:最近的高性能计算和深度学习的趋势导致了大规模深度神经网络培训研究的波动。然而,计算节点之间的频繁通信要求急剧减慢整体训练速度,这导致分布式训练中的瓶颈,特别是在具有有限网络带宽的集群中。为了减轻分布式通信的缺点,研究人员提出了各种优化策略。在本文中,我们提供了一种算法视点和计算机网络视角的通信策略的全面调查。算法优化侧重于减少分布式训练中使用的通信卷,而网络优化专注于加速分布式设备之间的通信。在算法级别,我们描述了如何减少每轮通信数量的数量和传输的比特。此外,我们阐明如何重叠计算和通信。在网络级别,我们讨论了网络基础架构引起的效果,包括逻辑通信方案和网络协议。最后,我们推断了潜在的未来挑战和新的研究方向,以加速分布式深度神经网络培训的通信。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号