首页> 外文期刊>Journal of Parallel and Distributed Computing >A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm
【24h】

A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm

机译:一种新的能量感知任务在利用混合元启发式算法雾计算中的调度方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, large computational problems have been solved by the distributed environment in which applications are executed in parallel. Also, lately, fog computing or edge computing as a new environment is applied to collect data from the devices and preprocessing is done before sending for main processing in cloud computing. Since one of the crucial issues in such systems is task scheduling, this issue is addressed by considering reducing energy consumption. In this study, an energy-aware method is introduced by using the Dynamic Voltage and Frequency Scaling (DVFS) technique to reduce energy consumption. In addition, in order to construct valid task sequences, a hybrid Invasive Weed Optimization and Culture (IWO-CA) evolutionary algorithm is applied. The experimental results revealed that the proposed algorithm improves some current algorithms in terms of energy consumption.
机译:近年来,通过分布式环境解决了大量的计算问题,其中应用程序并行执行。 此外,最近,雾计算或边缘计算作为新环境应用于从设备中收集数据,并在发送云计算中的主要处理之前完成预处理。 由于此类系统中的一个关键问题是任务调度,因此通过考虑降低能耗来解决此问题。 在该研究中,通过使用动态电压和频率缩放(DVFS)技术来减少能量消耗来引入能量感知方法。 另外,为了构建有效的任务序列,应用了混合侵入性杂草优化和培养(IWO-CA)进化算法。 实验结果表明,该算法在能量消耗方面提高了一些当前算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号