首页> 外文期刊>Journal of Parallel and Distributed Computing >Graph-Waving architecture: Efficient execution of graph applications on GPUs
【24h】

Graph-Waving architecture: Efficient execution of graph applications on GPUs

机译:图挥舞架构:高效执行GPU上的图形应用程序

获取原文
获取原文并翻译 | 示例

摘要

Most existing graph frameworks for GPUs adopt a vertex-centric computing model where vertex to thread mapping is applied. When run with irregular graphs, we observe significant load imbalance within SIMD-groups using vertex to thread mapping. Uneven work distribution within SIMD-groups leads to low utilization of SIMD units and inefficient use of memory bandwidth. We introduce Graph-Waving (GW) architecture to improve support for many graph applications on GPUs. It uses vertex to SIMD-group mapping and Scalar-Waving as a mechanism for efficient execution. It also favors a narrow SIMD-group width with a clustered issue approach and reuse of instructions in the front-end. We thoroughly evaluate GW architecture using timing detailed GPGPU-sim simulator with several graph and non-graph benchmarks from a variety of benchmark suites. Our results show that GW architecture provides an average of 4.4x and a maximum of 10x speedup with graph applications, while it obtains 9% performance improvement with regular and 17% improvement with irregular benchmarks.
机译:大多数现有GPU的图形框架采用了一个以顶点为中心的计算模型,其中应用了顶点映射的顶点。使用不规则图形运行时,我们使用顶点在SIMD组内观察到的大量负载不平衡来线程映射。 SIMD组内的不均匀性分配导致SIMD单元的利用率低,内存带宽的低效使用。我们介绍了Graph-Waving(GW)架构,以提高GPU上的许多图形应用的支持。它使用顶点到SIMD组映射和标量波作为有效执行的机制。它还利用群集问题方法和前端中的指令重用了窄的SIMD组宽度。我们利用各种图形和非图形基准从各种基准套件进行了多种图表和非图形基准,彻底评估了GW架构。我们的结果表明,GW架构平均提供了4.4倍,最多10倍加速,图表应用,同时它具有9%的性能改进,具有不规则基准的规则和17%的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号