首页> 外文期刊>Journal of Parallel and Distributed Computing >Understanding the latency distribution of cloud object storage systems
【24h】

Understanding the latency distribution of cloud object storage systems

机译:了解云对象存储系统的延迟分布

获取原文
获取原文并翻译 | 示例

摘要

As a fundamental cloud service, the cloud object storage system stores and retrieves millions or even billions of read-heavy data objects. Serving for a massive amount of requests each day makes the response latency be a vital component of user experiences. Timeout is also a key issue as it has a great impact on the response latency. Due to the lack of suitable understanding on the distribution of the response latency and the occurrence of timeouts, current practice is to use overprovision resources to meet a Service Level Agreement (SLA) on response latency. Hence, firstly, we build a performance model for the cloud object storage system, which assumes no timeout occurring. Our model predicts the percentage of requests meeting an SLA, in the context of complicated disk operations, event-driven programming model and requests waiting for being accept()-ed. Secondly, we propose a method that determines whether or not our model is applicable by predicting the occurrence of timeouts. We evaluate our model with a production system using a real-world trace. In a variety of scenarios, our model reduces the prediction errors by up to 90% compared with baseline models, and its overall average error is 2.63%. Moreover, we could also accurately predict the applicability of our model. (C) 2019 Elsevier Inc. All rights reserved.
机译:作为基本云服务,云对象存储系统存储并检索数百万或甚至数十亿的读取重数据对象。为每天提供大量的请求使响应延迟成为用户体验的重要组成部分。超时也是关键问题,因为它对响应延迟产生了很大影响。由于缺乏对响应延迟的分布和超时的发生的合适理解,目前的做法是使用过度管理资源来满足响应延迟的服务级别协议(SLA)。因此,首先,我们为云对象存储系统构建一个性能模型,假设没有发生超时。我们的模型在复杂的磁盘操作,事件驱动的编程模型和等待接受() - ed的请求中,我们的模型预测了遇到SLA的请求百分比。其次,我们提出了一种通过预测超时的发生来确定我们的模型是否适用的方法。我们使用现实世界追踪使用生产系统评估我们的模型。在各种场景中,与基线模型相比,我们的模型将预测误差降低至90%,其总体平均误差为2.63%。此外,我们还可以准确预测模型的适用性。 (c)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
  • 作者

    Su Yi; Feng Dan; Hua Yu; Shi Zhan;

  • 作者单位

    Huazhong Univ Sci & Technol Minist Educ China Res Inst Key Lab Informat Storage Syst Wuhan Natl Lab Opto Shenzhen Huazhong Univ Sci & Technol Sch Comp Sci Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Minist Educ China Res Inst Key Lab Informat Storage Syst Wuhan Natl Lab Opto Shenzhen Huazhong Univ Sci & Technol Sch Comp Sci Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Minist Educ China Res Inst Key Lab Informat Storage Syst Wuhan Natl Lab Opto Shenzhen Huazhong Univ Sci & Technol Sch Comp Sci Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Minist Educ China Res Inst Key Lab Informat Storage Syst Wuhan Natl Lab Opto Shenzhen Huazhong Univ Sci & Technol Sch Comp Sci Wuhan 430074 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Performance modeling; Cloud object storage; Latency distribution; Queueing theory;

    机译:性能建模;云对象存储;延迟分布;排队理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号