首页> 外文期刊>Journal of Parallel and Distributed Computing >Topic-based rank search with verifiable social data outsourcing
【24h】

Topic-based rank search with verifiable social data outsourcing

机译:基于主题的排名搜索和可验证的社交数据外包

获取原文
获取原文并翻译 | 示例

摘要

As the explosive development of social network sites, social data has successfully captured either individuals' or entities' attention due to having tremendous commercial value. The initial step to my various insights from social data is how to obtain authentic social data. Social data outsourcing as a new paradigm has been pervasive, in which a social data provider collects integrity social data from different social network sites and resells to data consumers on demand. However, some dishonest activities, like adding fake data, deleting/modifying raw data, drive us to consider verifiable topic-based rank search problem on social data outsourcing scenario. To guarantee the authenticity of social data, we propose two schemes. In our basic scheme, social network sites generate unforgeable auxiliary information and outsource to the social data provider as well as social data. Data consumers can probabilistically verify the correctness and completeness of the query results with the help of verification objects derived from auxiliary information. To reduce the number of the most related topic labels, we propose an enhanced scheme, in which the social network sites first cluster similar topics together, and then generate auxiliary information. Rigorous security and performance analyses prove that our proposed schemes are safe and effective. In addition, our experimental results built on a real Twitter dataset which demonstrates the efficacy and efficiency of our schemes. (C) 2019 Elsevier Inc. All rights reserved.
机译:随着社交网站的爆炸性发展,社交数据由于具有巨大的商业价值而成功地吸引了个人或实体的注意。从社交数据获得各种见解的第一步是如何获取真实的社交数据。社交数据外包已成为一种新的范例,其中社交数据提供商从不同的社交网站收集完整的社交数据,然后按需转售给数据消费者。但是,一些不诚实的活动(例如添加假数据,删除/修改原始数据)驱使我们考虑在社交数据外包方案中可验证的基于主题的排名搜索问题。为了保证社交数据的真实性,我们提出了两种方案。在我们的基本方案中,社交网站生成不可伪造的辅助信息,并将其外包给社交数据提供者和社交数据。数据使用者可以借助从辅助信息派生的验证对象来概率性地验证查询结果的正确性和完整性。为了减少最相关的主题标签的数量,我们提出了一种增强的方案,其中社交网站首先将相似的主题聚类在一起,然后生成辅助信息。严格的安全性和性能分析证明,我们提出的方案是安全有效的。此外,我们的实验结果建立在真实的Twitter数据集上,证明了我们方案的有效性和效率。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号