首页> 外文期刊>Journal of Parallel and Distributed Computing >A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system
【24h】

A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system

机译:基于可穿戴传感器的活动预测系统,可促进智能医疗系统中的边缘计算

获取原文
获取原文并翻译 | 示例

摘要

An increase in world population along with elderly people is causing fast rises in healthcare costs. Technologies (e.g., Internet-of-Things, Edge-of-Things, and Cloud-of-Things) in healthcare systems are going through a transformation where health monitoring of people is possible without hospitalization. The advancement of sensing technologies helps to make it possible to develop smart systems to monitor human behaviors continuously. In this work, a wearable sensor-based system is proposed for activity prediction using Recurrent Neural Network (RNN) on an edge device (i.e., personal computer or laptop). The input data of the system are obtained from multiple wearable healthcare sensors such as electrocardiography (ECG), magnetometer, accelerometer and gyroscope sensors. Then, an RNN is trained based on the features. The trained RNN is used for predicting the activities. The system has been compared against the conventional approaches on a publicly available standard dataset. The experimental results show that the proposed approach outperforms other traditional methods. Graphics Processing Unit (GPU) in the edge device is utilized to take the advantage of fast computation of experimental data. (C) 2018 Elsevier Inc. All rights reserved.
机译:世界人口与老年人的增加导致医疗保健费用的快速上涨。医疗保健系统中的技术(例如物联网,物边缘和物云)正在经历转型,无需住院即可对人员进行健康监控。传感技术的进步有助于使开发智能系统来连续监控人类行为成为可能。在这项工作中,提出了一种基于可穿戴传感器的系统,用于在边缘设备(即个人计算机或笔记本电脑)上使用递归神经网络(RNN)进行活动预测。系统的输入数据是从多个可穿戴的医疗保健传感器(如心电图(ECG),磁力计,加速度计和陀螺仪传感器)获得的。然后,基于这些特征训练RNN。训练有素的RNN用于预测活动。该系统已与可公开获得的标准数据集上的常规方法进行了比较。实验结果表明,该方法优于其他传统方法。利用边缘设备中的图形处理单元(GPU)来利用快速计算实验数据的优势。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号