首页> 外文期刊>Journal of Parallel and Distributed Computing >Event-based sensor data exchange and fusion in the Internet of Things environments
【24h】

Event-based sensor data exchange and fusion in the Internet of Things environments

机译:物联网环境中基于事件的传感器数据交换和融合

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) is a promising technology for improving our lives and society by integrating smart devices in our environment and paving the way for novel ICT application, spanning from smart cities to energy efficiency and home automation. However, such a vision encompasses the availability of thousands of smart devices, or even more, that continuously exchange a huge volume of data among each other and with cloud-based services, raising a big data problem. Such a problem can be approached by properly applying data fusion practices within an IoT infrastructure. Due to the characteristics and peculiarities of the communications among smart devices within the IoT, an event-based data fusion is needed, where devices exchange notifications of events among each others. Such data fusion should be focused on special devices where notification heterogeneity, and data source trust issues have to be faced with. Accordingly, the contnbution of this work is proposing (i) a novel broker-less event-based communication protocol specifically tailored to sensors with constrained resources, (ii) a solution for flexible event-based communications among heterogeneous data sources, and (iii) an approach based on the theory of evidence for data fusion processes that depend on the matching and trust degree of the data to be fused. (C) 2017 Elsevier Inc. All rights reserved.
机译:物联网(IoT)是一项有前途的技术,可通过将智能设备集成到环境中并为从智能城市到能效和家庭自动化的新型ICT应用铺平道路,从而改善我们的生活和社会。但是,这种愿景涵盖了成千上万个甚至更多的智能设备的可用性,这些智能设备之间以及与基于云的服务之间不断地交换大量数据,从而引发了大数据问题。可以通过在IoT基础架构中正确应用数据融合实践来解决此问题。由于物联网中智能设备之间通信的特性和特殊性,需要基于事件的数据融合,其中设备之间相互交换事件的通知。此类数据融合应集中在必须面对通知异构性和数据源信任问题的特殊设备上。因此,这项工作的目的是提出(i)一种新的无代理基于事件的通信协议,该协议专门为资源受限的传感器量身定制;(ii)一种用于异构数据源之间基于事件的灵活通信的解决方案,以及(iii)一种基于证据理论的数据融合过程的方法,该过程取决于要融合的数据的匹配度和信任度。 (C)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号