首页> 外文期刊>Journal of Parallel and Distributed Computing >A data-driven approach of performance evaluation for cache server groups in content delivery network
【24h】

A data-driven approach of performance evaluation for cache server groups in content delivery network

机译:基于数据驱动的内容交付网络中缓存服务器组的性能评估方法

获取原文
获取原文并翻译 | 示例

摘要

In industry, Content Delivery Network (CDN) service providers are increasingly using data-driven mechanisms to build the performance models of the service-providing systems. Building a model to accurately describe the performance of the existing infrastructure is very crucial to make resource management decisions. Conventional approaches that use hand-tuned parameters or linear models have their drawbacks. Recently, data-driven paradigm has been shown to greatly outperform traditional methods in modeling complex systems. We design a data-driven approach to building a reasonable and feasible performance model for CDN cache server groups. We use deep LSTM auto-encoder to capture the temporal structures from the high-dimensional monitoring data, and use a deep neural network to predict the reach rate which is a client QoS measurement from the CDN service providers' perspective. The experimental results have shown that our model is able to outperform state-of-the-art models. (C) 2018 Elsevier Inc. All rights reserved.
机译:在行业中,内容交付网络(CDN)服务提供商越来越多地使用数据驱动机制来构建服务提供系统的性能模型。建立一个能够准确描述现有基础架构性能的模型对于做出资源管理决策至关重要。使用手动调整的参数或线性模型的常规方法有其缺点。最近,在复杂系统的建模中,数据驱动范例已被证明大大优于传统方法。我们设计了一种数据驱动的方法来为CDN缓存服务器组构建合理可行的性能模型。我们使用深度LSTM自动编码器从高维监视数据中捕获时间结构,并使用深度神经网络来预测到达率,这是从CDN服务提供商的角度进行的客户端QoS测量。实验结果表明,我们的模型能够胜过最新模型。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号