首页> 外文期刊>Journal of Parallel and Distributed Computing >Remote visual analysis of large turbulence databases at multiple scales
【24h】

Remote visual analysis of large turbulence databases at multiple scales

机译:大型湍流数据库的远程可视分析

获取原文
获取原文并翻译 | 示例

摘要

The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. We present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methods supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. The database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction. (C) 2018 Elsevier Inc. All rights reserved.
机译:原始大湍流数据集的远程分析和可视化具有挑战性。当前对湍流的精确的直接数值模拟(DNS)生成的数据集每个时间步长有数十亿个点,每个模拟时间有数千个时间步长。直到最近,此类数据集的分析和可视化还仅限于可以使用大型超级计算机的科学家。约翰霍普金斯大学湍流公共数据库简化了对多TB湍流数据集的访问,并通过使用商品硬件促进了统计数据的计算和特征的提取。我们提出了一种基于小波压缩的框架,用于大型数据集的高速可视化以及支持多分辨率湍流分析的方法。通过集成通用技术,此框架可以通过Web远程访问超级计算机上可用的工具和超过230 TB的DNS数据。通过提供对探索性数据分析工具(例如小波分解功能和相干特征提取)的访问权限,扩展了数据库工具集。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号