首页> 外文期刊>Journal of Parallel and Distributed Computing >DADTA: A novel adaptive strategy for energy and performance efficient virtual machine consolidation
【24h】

DADTA: A novel adaptive strategy for energy and performance efficient virtual machine consolidation

机译:DADTA:一种用于能源和性能高效虚拟机整合的新型自适应策略

获取原文
获取原文并翻译 | 示例

摘要

Large-scale virtualized data centers are increasingly becoming the norm in our data-intensive society. One pressing challenge is to reduce energy consumption in such data centers for edge computing deployment, which would have flow-on effects on reducing the operating costs and carbon dioxide emissions. Dynamic virtual machine consolidation is an effective way to improve resource utilization and energy efficiency. In this paper, a comprehensive strategy is proposed, which is based on time-series forecasting approach. In this strategy, specific adjustment of threshold is applied to adapt the dynamic workload. We then use a real-world dataset (i.e. workload trace in Google) for evaluation, whose findings demonstrate that our strategy outperforms other benchmarks. (C) 2018 Elsevier Inc. All rights reserved.
机译:大型虚拟化数据中心正日益成为我们数据密集型社会的常态。一项紧迫的挑战是减少此类数据中心用于边缘计算部署的能耗,这将对降低运营成本和减少二氧化碳排放产生持续影响。动态虚拟机整合是提高资源利用率和能源效率的有效方法。本文提出了一种基于时间序列预测的综合策略。在此策略中,将应用阈值的特定调整以适应动态工作负载。然后,我们使用真实的数据集(即Google中的工作量跟踪)进行评估,其发现表明我们的策略优于其他基准。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号