首页> 外文期刊>Journal of Parallel and Distributed Computing >Towards autonomic application-sensitive partitioning for SAMR applications
【24h】

Towards autonomic application-sensitive partitioning for SAMR applications

机译:走向针对SAMR应用程序的自主应用程序敏感分区

获取原文
获取原文并翻译 | 示例

摘要

Distributed structured adaptive mesh refinement (SAMR) techniques offer the potential for accurate and cost-effective solutions of physically realistic models of complex physical phenomena. However, the heterogeneous and dynamic nature of SAMR applications results in significant runtime management challenges. This paper investigates autonomic application-sensitive SAMR runtime management strategies and presents the design, implementation, and evaluation of ARMaDA, a self-adapting and optimizing partitioning framework for SAMR applications. ARMaDA monitors and characterizes application runtime state, and dynamically selects and invokes appropriate partitioning mechanisms that match current SAMR state and optimize its computational and communication performance. The advantages of the autonomic partitioning capabilities provided by ARMaDA are experimentally demonstrated. (c) 2005 Elsevier Inc. All rights reserved.
机译:分布式结构化自适应网格细化(SAMR)技术为复杂物理现象的物理逼真的模型的精确且经济高效的解决方案提供了潜力。但是,SAMR应用程序的异构性和动态性导致严重的运行时管理挑战。本文研究了自主应用程序敏感的SAMR运行时管理策略,并提出了ARMaDA的设计,实现和评估,ARMaDA是一种针对SAMR应用程序的自适应和优化的分区框架。 ARMaDA监视和表征应用程序运行时状态,并动态选择和调用与当前SAMR状态匹配并优化其计算和通信性能的适当分区机制。实验证明了ARMaDA提供的自主分区功能的优势。 (c)2005 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号