首页> 外文期刊>Journal of Parallel and Distributed Computing >Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system
【24h】

Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system

机译:异构分布式系统中使用遗传算法的多启发式动态任务分配

获取原文
获取原文并翻译 | 示例

摘要

We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms.
机译:我们提出了一种多启发式进化任务分配算法,以将任务动态映射到异构分布式系统中的处理器。它利用遗传算法结合八种常见的启发式方法,以最大程度地减少总执行时间。它可以处理大量未映射的任务,并且可以抢先将任务重新映射到处理器。该算法已在Java分布式系统上实现,并针对来自生物信息学,生物医学工程,计算机科学和密码学领域的六个问题进行了评估。使用多达150个异构处理器的实验表明,该算法比其他最新的启发式算法具有更高的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号