首页> 外文期刊>Journal of Parallel and Distributed Computing >ORN: A content-based approach to improving supplier discovery in P2P VOD networks
【24h】

ORN: A content-based approach to improving supplier discovery in P2P VOD networks

机译:ORN:一种基于内容的方法来改善P2P VOD网络中的供应商发现

获取原文
获取原文并翻译 | 示例

摘要

There are two major building blocks in operating a peer-to-peer (P2P) video-on-demand (VOD) network: supplier discovery and content delivery. Supplier discovery concerns the discovery of peer nodes in the network that can provide the streaming data blocks needed for playing by a local node. The more suppliers one can discover, the higher the chance of locating quality suppliers for delivering contents smoothly to ensure uninterrupted playback. The key to supplier discovery is to establish and track the supply-demand relationship among the peers. For P2P VOD, the supply-demand relationship is determined by the buffer contents of the peers. Unfortunately, the buffer contents change rapidly as peers play the video, especially under VCR operations. The challenge is to track all the dynamic relationships in an efficient way. In this paper, we propose an Overlapping Relation Network (ORN). The idea is to track the dynamic supply-demand relationship by tracking the overlapping of peers' buffer contents. As long as peers play the video at the same rate, the overlapping relationship is stable and can be used for low-cost supplier discovery. Extensive analyses and simulation experiments show that in most cases the ORN can discover more than 96% of the suppliers in the network, resulting in a streaming continuity that is superior to that of other approaches.
机译:操作点对点(P2P)视频点播(VOD)网络有两个主要构建块:供应商发现和内容交付。供应商发现涉及网络中对等节点的发现,该对等节点可以提供本地节点播放所需的流数据块。供应商可以发现的供应商越多,找到优质供应商来顺利交付内容以确保不间断播放的机会就越大。发现供应商的关键是在同伴之间建立和跟踪供求关系。对于P2P VOD,供需关系由对等方的缓冲区内容确定。不幸的是,缓冲区的内容随着同位体播放视频而迅速变化,尤其是在VCR操作下。挑战在于如何有效地跟踪所有动态关系。在本文中,我们提出了一种重叠关系网络(ORN)。这个想法是通过跟踪对等方缓冲区内容的重叠来跟踪动态的供求关系。只要对等方以相同的速率播放视频,重叠关系就会稳定,并且可以用于低成本的供应商发现。大量的分析和模拟实验表明,在大多数情况下,ORN可以发现网络中超过96%的供应商,从而导致流连续性优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号