首页> 外文期刊>Journal of materials science >A low-temperature bonding method for high power device packaging based on In-infiltrated nanoporous Cu
【24h】

A low-temperature bonding method for high power device packaging based on In-infiltrated nanoporous Cu

机译:基于渗透纳米多孔Cu的高功率器件包装低温粘接方法

获取原文
获取原文并翻译 | 示例
       

摘要

With the rapid development of the third-generation semiconductor materials, an appropriate high-temperature-resistant die attach material has become one of the bottlenecks to fully exploit the excellent properties of the third-generation semiconductor power devices. At the same time, a low-bonding temperature is always the pursuit goal of packaging engineers to reduce the thermal residual stress in electronic devices. In this paper, a low-temperature bonding method was proposed to address the above-mentioned issue based on In infiltrating the nanoporous Cu. In, as a low melting point metal, can significantly reduce the bonding temperature, and the nanoporous Cu structure can provide a very large specific surface area, which greatly increases the consumption rate of In. Furthermore, the formed Cu-In IMCs with high-remelting temperature can withstand the high operating temperature. The microstructures of the bondlines before and after bonding were studied in detail. The results show that the bondline can completely consume the low melting point In, within 10 min at 165 °C under a pressure of 0.75 MPa. When the bonding temperature was further increased to 310 °C, the bondline was composed of η-Cu_2In and δ-Cu_7In_3 phases, whose melting points were more than 600 °C. The average electrical resistivity was determined to be 5.53±0.65 μΩ cm, and the thermal conductivities were 144.33 W m~(-1) K~(-1), 139.24 W m~(-1) K~(-1) and 129.79 W m~(-1) K~(-1) at 30 °C, 150 °C and 300 °C, respectively. The average shear strength were 19.09±3.4 MPa, 20.47 ±4.6 MPa and 30.73 ±5.2 MPa at 30 °C, 250 °C, 310 °C, respectively. These results indicate that the nanoporous Cu infiltrated with In could meet the requirements of electrical, thermal conduction, and mechanical support as a die attachment for high-power devices.
机译:随着第三代半导体材料的快速发展,适当的高温模具安装材料已成为充分利用第三代半导体动力装置的优异特性的瓶颈之一。同时,低键合温度始终是包装工程师的追求目标,以降低电子设备中的热残余应力。在本文中,提出了一种低温键合方法以解决基于纳米多孔铜的上述问题。在,作为低熔点金属,可以显着降低键合温度,并且纳米孔Cu结构可以提供非常大的比表面积,这大大提高了含量的消耗率。此外,具有高重熔温度的形成的Cu-ImC可以承受高工作温度。详细研究了键合前后键合的微观结构。结果表明,在0.75MPa的压力下,键合线可以在165℃下在10分钟内完全消耗低熔点。当键合温度进一步增加到310℃时,键合线由η-Cu_2素和δ-Cu_7in_3相组成,其熔点大于600℃。将平均电阻率确定为5.53±0.65μΩcm,导热率为144.33Wm〜(-1)k〜(-1),139.24 w m〜(-1)k〜(-1)和129.79 W m〜(-1)k〜(-1)分别在30°C,150°C和300°C。平均剪切强度分别为19.09±3.4MPa,20.47±4.6MPa和30.73±5.2MPa,分别为30°C,250°C,310°C。这些结果表明,用IN渗透的纳米多孔Cu可以满足电气,热传导和机械支撑的要求作为高功率器件的模具附件。

著录项

  • 来源
    《Journal of materials science》 |2020年第17期|14157-14164|共8页
  • 作者单位

    State Key Lab of Advanced Welding and Joining Harbin Institute of Technology Harbin 150001 China;

    Department of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 China;

    Department of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 China;

    China Science and Technology On Reliability Physics and Application of Electronic Component Laboratory Guangzhou 510610 China;

    Department of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 China;

    Department of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号