首页> 外文期刊>Journal of materials science >Microwave ferrites, part 2: passive components and electrical tuning
【24h】

Microwave ferrites, part 2: passive components and electrical tuning

机译:微波铁氧体,第2部分:无源元件和电调谐

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Low-loss ferrimagnets are the basis for passive microwave components operating in a wide range of frequencies. The magnetic resonances of passive components can be tuned using static magnetic fields over a wide frequency range, where higher operation frequencies require higher magnetic bias unless hexaferrites with large crystalline anisotropy are used. However, electrical tuning of the operation frequency, which can be achieved if the magnetic property of the material is sensitive to the field through magnetoelectric (ME) coupling, is more attractive than magnetic tuning. In the so-called multiferroic materials such as TbMnO_3, TbMn_2O_5, BiFeO_3, Cr_2O_3, and BiMnO_3, which possess simultaneously both the ferroelectric and ferromagnetic properties, ME coupling is very small to be practical. The ME effect, however, can be significantly enhanced in the case of bilayer/multilayer structures with one constituent highly piezoelectric, such as Pb(Zr_(1-x)Ti_x)O_3 (PZT) and 0.7Pb(Mg_(1-x)Nb_(2/3))O_3-0.3PbTiO_3 (PMN-PT), and the other highly ferromagnetic, opening up the possibility for a whole host of tunable microwave passive components. In such structures, the strain induced by the electric field applied across the piezoelectric material is transferred mechanically to the magnetic material, which then experiences a change in its magnetic permeability through magnetostriction. Additionally, electrical tuning coupled with high dielectric permittivity and magnetic susceptibility could lead to miniature microwave components and/or make operation at very high frequencies possible without the need for increased size and weight common in conventional approaches. In Part 1 of this review, fundamentals of ferrite materials, interconnecting chemical, structural, and magnetic properties with the treatment of various types of ferrites used in microwave systems are discussed. Part 2 discusses the basis for coupling between electrical and magnetic properties for highly attractive electrical tuning of passive components by combining piezoelectric materials with ferrites and various device applications of ferrites.
机译:低损耗ferrimagnets是无源微波组件在各种频率下工作的基础。可以使用很宽的频率范围内的静磁场来调整无源组件的磁共振,在更高的工作频率下,除非使用具有较大晶体各向异性的六铁氧体,否则更高的工作频率需要更高的磁偏置。但是,如果材料的磁性质通过磁电(ME)耦合对磁场敏感,则可以实现对工作频率的电调谐,它比磁调谐更具吸引力。在同时具有铁电性质和铁磁性质的所谓的多铁性材料如TbMnO_3,TbMn_2O_5,BiFeO_3,Cr_2O_3和BiMnO_3中,ME耦合很小,难以实用。但是,在具有一个组成高度压电的双层/多层结构的情况下,例如Pb(Zr_(1-x)Ti_x)O_3(PZT)和0.7Pb(Mg_(1-x) Nb_(2/3))O_3-0.3PbTiO_3(PMN-PT)和其他高铁磁性的材料为大量可调谐微波无源元件的开发提供了可能性。在这样的结构中,由施加在压电材料上的电场引起的应变被机械地传递到磁性材料,然后磁性材料通过磁致伸缩而经历其磁导率的变化。另外,与高介电常数和磁化率相结合的电调谐可以导致微型微波组件和/或使得在非常高的频率下操作成为可能,而无需增加常规方法中常见的尺寸和重量。在这篇综述的第1部分中,讨论了铁氧体材料的基本原理,互连的化学,结构和磁性能以及微波系统中使用的各种类型的铁氧体的处理方法。第2部分讨论了通过将压电材料与铁氧体以及铁氧体的各种设备应用结合起来,实现无源组件的极具吸引力的电调谐的电气和磁性能之间耦合的基础。

著录项

  • 来源
    《Journal of materials science》 |2009年第10期|911-952|共42页
  • 作者单位

    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;

    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;

    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号