首页> 外文期刊>Journal of Heat Transfer >Experimental Characterization of Inward Freezing and Melting of Additive-Enhanced Phase-Change Materials Within Millimeter-Scale Cylindrical Enclosures
【24h】

Experimental Characterization of Inward Freezing and Melting of Additive-Enhanced Phase-Change Materials Within Millimeter-Scale Cylindrical Enclosures

机译:毫米级圆柱外壳内添加剂增强相变材料的内向冻结和熔化的实验表征

获取原文
获取原文并翻译 | 示例
       

摘要

The inward melting and solidification of phase-change materials (PCM) within millimeter-scale cylindrical enclosures have been experimentally characterized in this work. The effects of cylinder size, thermal loading, and concentration of high-conductivity additives were investigated under constant temperature boundary conditions. Using a custom-built apparatus with fast response, freezing and melting have been measured for time periods as short as 15 s and 33 s, respectively. The enhancement of PCM thermal conductivity using exfoliated graphene nanoplatelets (xGnPs) has also been measured, showing a greater than 3× increase for a concentration of 6wt.%. Reductions in the total melting and freezing times of up to 66% and 55%, respectively, have been achieved using xGnP concentrations of only 4.5 wt.%. It is shown that the phase-change dynamics of pure and enhanced PCM are well predicted using a simple conduction-only model, demonstrating the validity of approximating enhanced PCM with low additive loadings as homogenous materials with isotropic properties. While general consistency between the measurements and model is seen, the effect of additives on heat transfer rate during the initial stages of freezing and melting is lower than expected, particularly for the smaller cylinder sizes of 6 mm. These results suggest that the thermal resistance of the PCM is not the limiting factor dictating the speed of the solid-liquid interface during these initial stages.
机译:在这项工作中,已经通过实验表征了毫米级圆柱形外壳内相变材料(PCM)的向内熔化和固化。在恒定温度边界条件下,研究了气缸尺寸,热负荷和高电导性添加剂浓度的影响。使用具有快速响应的定制设备,已分别测量了短至15 s和33 s的冻结和融化时间。还测量了使用剥落的石墨烯纳米片(xGnPs)增强的PCM热导率,对于6wt。%的浓度,显示出大于3倍的增加。使用仅4.5 wt。%的xGnP浓度,总熔化时间和凝固时间分别减少了66%和55%。结果表明,使用简单的仅导电模型可以很好地预测纯和增强PCM的相变动力学,证明了将具有低添加剂负载的增强PCM近似为具有各向同性特性的均质材料的有效性。虽然可以看到测量值和模型之间的总体一致性,但在冷冻和融化初期,添加剂对传热速率的影响比预期的要低,特别是对于6 mm的较小圆柱体。这些结果表明,在这些初始阶段,PCM的热阻不是决定固液界面速度的限制因素。

著录项

  • 来源
    《Journal of Heat Transfer》 |2016年第7期|072301.1-072301.13|共13页
  • 作者单位

    Mem. ASME Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104;

    Mem. ASME Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104;

    Mem. ASME Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104;

    Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104;

    Mem. ASME Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104;

    Mem. ASME Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:22:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号