首页> 外文期刊>Journal of Heat Transfer >Flow and Heat Transfer in Micro Pin Fin Heat Sinks With Nano-Encapsulated Phase Change Materials
【24h】

Flow and Heat Transfer in Micro Pin Fin Heat Sinks With Nano-Encapsulated Phase Change Materials

机译:纳米封装相变材料的微针翅片散热器的流动和传热

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, a 3D-conjugated heat transfer model for nano-encapsulated phase change materials (NEPCMs) cooled micro pin fin heat sink (MPFHS) is presented. The governing equations of flow and heat transfer are solved using a finite volume method based on collocated grid and the results are validated with the available data reported in the literature. The effect of nanoparticles volume fraction (C = 0.1, 0.2, and 0.3), inlet velocity (V_(in) = 0.015, 0.030, and 0.045 m/s), and bottom wall temperature (T_(wall) = 299.15, 303.15, 315.15, and 350.15 K) is studied on Nusselt and Euler numbers as well as temperature contours in the system. The results indicate that significant heat transfer enhancement is achieved when using the NEPCM slurry as an advanced coolant. The maximum Nusselt number when NEPCM slurry (C = 0.3) with V_(in)= 0.015, 0.030, and 0.045 (m/s) is employed is 2.27,1.81, and 1.56 times higher than the ones with base fluid, respectively. However, with increasing bottom wall temperature, the Nusselt number first increases then decreases. The former is due to higher heat transfer capability of coolant at temperatures over the melting range of phase change material (PCM) particles due to partial melting of nanoparticles in this range. However, the latter phenomenon is due to the lower capability of the NEPCM particles and consequently coolant in absorbing heat at coolant temperatures is higher than the temperature correspond to fully melted NEPCM. It was observed that the NEPCM slurry has a drastic effect on the Euler number, and with increasing volume fraction and decreasing inlet velocity, the Euler number increases accordingly.
机译:本文提出了一种用于纳米封装相变材料(NEPCM)冷却的微针翅片散热器(MPFHS)的3D共轭传热模型。流动和传热的控制方程是使用有限体积的方法基于并置网格来求解的,其结果可以用文献中报道的可用数据进行验证。纳米颗粒体积分数(C = 0.1、0.2和0.3),入口速度(V_(in)= 0.015、0.030和0.045 m / s)和底壁温度(T_(wall)= 299.15,303.15, 315.15和350.15 K)研究了Nusselt和Euler数以及系统中的温度等高线。结果表明,当使用NEPCM浆料作为高级冷却剂时,可以显着提高传热效果。当使用V_(in)= 0.015、0.030和0.045(m / s)的NEPCM浆液(C = 0.3)时,最大Nusselt数分别是使用基础液的Nusselt浆数的2.27、1.81和1.56倍。但是,随着底壁温度的升高,Nusselt数先增加然后减少。前者是由于在此范围内的纳米粒子部分熔化而在相变材料(PCM)粒子熔化范围内的温度下,冷却​​剂的传热能力更高。但是,后一种现象是由于NEPCM颗粒的能力较低,因此,冷却剂在冷却剂温度下吸收热量的温度高于对应于完全熔化的NEPCM的温度。观察到,NEPCM浆料对欧拉数具有剧烈的影响,并且随着体积分数的增加和入口速度的减小,欧拉数相应地增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号