首页> 外文期刊>Journal of Functional Programming >AutoBayes: a system for generating data analysis programs from statistical models
【24h】

AutoBayes: a system for generating data analysis programs from statistical models

机译:AutoBayes:一种用于从统计模型生成数据分析程序的系统

获取原文
获取原文并翻译 | 示例

摘要

Data analysis is an important scientific task which is required whenever information needs to be extracted from raw data. Statistical approaches to data analysis, which use methods from probability theory and numerical analysis, are well-founded but difficult to implement: the development of a statistical data analysis program for any given application is time-consuming and requires substantial knowledge and experience in several areas. In this paper, we describe AutoBayes, a program synthesis system for the generation of data analysis programs from statistical models. A statistical model specifies the properties for each problem variable (i.e. observation or parameter) and its dependencies in the form of a probability distribution. It is a fully declarative problem description, similar in spirit to a set of differential equations. From such a model, AutoBayes generates optimized and fully commented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Code is produced by a schema-guided deductive synthesis process. A schema consists of a code template and applicability constraints which are checked against the model during synthesis using theorem proving technology. AutoBayes augments schema-guided synthesis by symbolic-algebraic computation and can thus derive closed form solutions for many problems. It is well-suited for tasks like estimating best-fitting model parameters for the given data. Here, we describe AutoBayes's system architecture, in particular the schema-guided synthesis kernel. Its capabilities are illustrated by a number of advanced textbook examples and benchmarks.
机译:数据分析是一项重要的科学任务,每当需要从原始数据中提取信息时都需要进行数据分析。数据分析的统计方法使用概率论和数值分析的方法,是有根据的,但难以实施:为任何给定应用程序开发统计数据分析程序非常耗时,并且需要在多个领域中具有丰富的知识和经验。在本文中,我们描述了AutoBayes,这是一种用于从统计模型生成数据分析程序的程序综合系统。统计模型以概率分布的形式指定每个问题变量(即观察值或参数)的属性及其依存关系。这是一个完全声明性的问题描述,其本质上类似于一组微分方程。通过这样的模型,AutoBayes可以生成经过优化并带有注释的C / C ++代码,可以将它们动态链接到Matlab和Octave环境中。代码是由模式指导的演绎综合过程产生的。模式由代码模板和适用性约束组成,它们在使用定理证明技术进行综合的过程中针对模型进行检查。 AutoBayes通过符号代数计算来增强模式指导的综合,因此可以得出许多问题的封闭式解决方案。它非常适合诸如为给定数据估算最合适的模型参数之类的任务。在这里,我们描述了AutoBayes的系统架构,特别是模式指导的综合内核。许多高级教科书示例和基准说明了它的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号