首页> 外文期刊>Journal of Flow Visualization and Image Processing >Visualization of the evaporation and condensation phenomena in cryogenic propellants
【24h】

Visualization of the evaporation and condensation phenomena in cryogenic propellants

机译:可视化低温推进剂中的蒸发和冷凝现象

获取原文
获取原文并翻译 | 示例
           

摘要

Prediction and control of evaporation/condensation of cryogenic propellants is one of the key factors limiting long-term space missions. Modeling propellant behavior and predicting phase change rates require models that need to be calibrated with experimental data. However, no such data is available on controlled phase change of cryogenic propellants. In this work, neutron imaging is employed as a means to visualize the condensed propellant inside opaque metallic containers at temperatures as low as 17 K. By controlling the temperature and pressure, a wide variety of phase change rates could be obtained. An exponential attenuation model is used to accurately determine the liquid-wall interface. Two methods of determining liquid volume as a function of time are described and compared. The interface tracking method uses an adaptive threshold edge detection and fit to the Young-Laplace equation while the optical density method calculates the liquid thickness for every pixel based on the Beer-Lambert law with a beam hardening correction. The former method is applicable only in images that have a fully formed meniscus whereas the latter method can be used on all images despite the shape/location of the liquid in the cell. Uncertainty in volume measurement with the optical density method is 6% lower than with the interface tracking method, and the results are in excellent agreement. In addition to volume, optical density method can be used to measure thickness of the thin liquid film on the wall of the container. For steady states, the interface tracking method will suffice but the optical density method is useful for high-accuracy volume measurements and thin film analysis.
机译:低温推进剂蒸发/冷凝的预测和控制是限制长期太空飞行任务的关键因素之一。对推进剂行为进行建模并预测相变速率需要使用实验数据进行校准的模型。但是,没有关于低温推进剂的受控相变的此类数据。在这项工作中,中子成像被用作在低至17 K的温度下可视化不透明金属容器内冷凝的推进剂的手段。通过控制温度和压力,可以获得各种各样的相变速率。指数衰减模型用于精确确定液壁界面。描述并比较了两种确定液体体积随时间变化的方法。界面跟踪方法使用自适应阈值边缘检测并适合Young-Laplace方程,而光密度方法则根据Beer-Lambert定律通过束硬化校正计算每个像素的液体厚度。前一种方法仅适用于弯月面完全形成的图像,而后一种方法可用于所有图像,尽管液体在细胞中的形状/位置如何。使用光密度法进行体积测量的不确定度比使用界面跟踪法降低了6%,结果非常吻合。除体积外,光密度法还可用于测量容器壁上液体薄膜的厚度。对于稳态,界面跟踪方法就足够了,但是光密度方法对于高精度体积测量和薄膜分析很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号