首页> 外文期刊>Journal of experimental algorithmics >A Robust And Fast Non-local Means Algorithm For Image Denoising
【24h】

A Robust And Fast Non-local Means Algorithm For Image Denoising

机译:一种鲁棒快速的非局部均值图像去噪算法

获取原文
获取原文并翻译 | 示例

摘要

In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm - similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.
机译:在本文中,我们提出了一种鲁棒且快速的图像去噪方法。该方法集成了非局部均值算法和拉普拉斯金字塔。给定要去噪的图像,我们首先将其分解为拉普拉斯金字塔。利用拉普拉斯金字塔的冗余属性,然后我们在拉普拉斯金字塔的每个级别图像上执行非局部均值。本质上,我们使用拉普拉斯金字塔中图像特征的相似性作为权重来对图像进行降噪。由于拉普拉斯金字塔中提取的特征在空间位置和比例上是局部的,因此它们能够更好地描述图像,并且计算它们之间的相似度更加合理且更可靠。此外,基于有效的求和平方图像(SSI)方案和快速傅立叶变换(FFT),我们提出了一种加速算法来突破非局部均值算法的瓶颈-比较窗口的相似度计算。加速后,我们的算法比原始的非局部均值算法快了五十倍。实验证明了我们算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号