首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Data-Driven Fault Detection in Aircraft Engines With Noisy Sensor Measurements
【24h】

Data-Driven Fault Detection in Aircraft Engines With Noisy Sensor Measurements

机译:带有噪声传感器的飞机发动机数据驱动故障检测

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

An inherent difficulty in sensor-data-driven fault detection is that the detection performance could be drastically reduced under sensor degradation (e.g., drift and noise). Complementary to traditional model-based techniques for fault detection, this paper proposes symbolic dynamic filtering by optimally partitioning the time series data of sensor observation. The objective here is to mask the effects of sensor noise level variation and magnify the system fault signatures. In this regard, the concepts of feature extraction and pattern classification are used for fault detection in aircraft gas turbine engines. The proposed methodology of data-driven fault detection is tested and validated on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) test-bed developed by NASA for noisy (i.e., increased variance) sensor signals.
机译:传感器数据驱动的故障检测的固有困难是,在传感器退化(例如漂移和噪声)的情况下,检测性能可能会大大降低。与传统的基于模型的故障检测技术互补,本文通过对传感器观测的时间序列数据进行最佳划分,提出了符号动态滤波。此处的目的是掩盖传感器噪声水平变化的影响并放大系统故障信号。在这方面,特征提取和模式分类的概念用于飞机燃气涡轮发动机中的故障检测。由NASA开发的用于噪声(即方差增加)传感器信号的商业模块化航空推进系统仿真(C-MAPSS)测试台对提出的数据驱动故障检测方法进行了测试和验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号