首页> 外文期刊>Journal of Energy Resources Technology >Multiscale Multiphysics Modeling, Analysis, Simulation, and Fabrication of Carbon Nanotube-Based Integrated Power Inductor for System On-Chip With Magnetic Cores
【24h】

Multiscale Multiphysics Modeling, Analysis, Simulation, and Fabrication of Carbon Nanotube-Based Integrated Power Inductor for System On-Chip With Magnetic Cores

机译:基于碳纳米管的带磁芯片上系统的基于碳纳米管的集成功率电感器的多尺度多物理场建模,分析,仿真和制造

获取原文
获取原文并翻译 | 示例
       

摘要

The magnetics of power electronics has particular potential for improvement, as these components are typically the largest and volumetrically inefficient in a power circuit. Nowadays, the trend is to develop multiscale multiphysics structures to yield performance characteristics favorable in power electronic devices and power converters' applications. As the dimensions of materials are reduced to the nanometer realm, they often exhibit novel and interesting behavior, which constitute the basis for a new generation of electronic devices. Nanopar-ticles physical and chemical properties behavior is unique and peculiar compared to conventional or classical materials, for instance, silicon is a semiconductor while silicon nanowire is a good conductor. Hence, the exploitation and exploration of nanotechnology is critical to achieving reliable nanometer-based power devices with small footprint and reduced power consumption, among others. Nanotechnology-based power inductor that utilizes bundled-multiwalled carbon nanotubes and thin magnetic plates as cores can provide high-power-density, low-power-loss, and high performance in a small size for system on-chip (SoC). The bundled-multiwalled carbon nanotubes based power inductor with single-layer and three turns occupies an area of 0.1225 mm~2 exhibits an inductance of 263 nH, a quality factor of 771 at 20 MHz, and a dc rated current of 200 mA. The fabrication, design, analysis, multiscale multiphysics modeling, and simulation results of the bundled-multiwalled carbon nanotubes based power inductor are presented.
机译:电力电子器件的磁性具有特殊的改进潜力,因为这些组件通常是功率电路中最大的组件,并且在体积上效率低下。如今,趋势是开发多尺度多物理场结构,以产生有利于电力电子设备和电力转换器应用的性能特征。随着材料的尺寸缩小到纳米级,它们通常表现出新颖有趣的行为,这构成了新一代电子设备的基础。与传统或经典材料相比,纳米粒子的物理和化学特性行为是独特且独特的,例如,硅是半导体,而硅纳米线是良好的导体。因此,对纳米技术的开发和探索对于实现可靠的基于纳米的功率器件(其具有较小的占地面积和降低的功耗)至关重要。以纳米技术为基础的功率电感器,利用成束的多壁碳纳米管和薄磁性板作为核心,可以以小尺寸为片上系统(SoC)提供高功率密度,低功率损耗和高性能。具有单层和三匝的束缚多壁碳纳米管基功率电感器的面积为0.1225 mm〜2,表现出的电感为263 nH,在20 MHz时的品质因数为771,直流额定电流为200 mA。介绍了基于束缚多壁碳纳米管的功率电感器的制造,设计,分析,多尺度多物理场建模和仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号