首页> 外文期刊>Journal of Energy Resources Technology >Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
【24h】

Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model

机译:使用详细的化学动力学机理和大涡模拟湍流模型来模拟柴油和生物柴油燃料的火焰升空特性

获取原文
获取原文并翻译 | 示例
       

摘要

Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the renormalization group (RNG) k-ε. (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 μm and 125 μn were obtained for the RANS and LES cases, respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-E model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl nine-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.
机译:直喷式柴油机的燃烧以提升的湍流扩散火焰模式发生。大量研究表明,这种发动机的燃烧和排放受火焰特征的强烈影响,火焰特征又取决于火焰上游区域的燃料和空气混合,进而受液体分解和喷雾形成过程的影响。从数值的角度来看,这些喷雾燃烧过程在很大程度上取决于基础喷雾,燃烧和湍流模型的选择。本数值研究调查了柴油和生物柴油燃料的不同化学动力学机制以及雷诺平均Navier-Stokes(RANS)和大涡流模拟(LES)湍流模型对预测火焰升起长度(LOL)和点火延迟。具体来说,研究了正庚烷(NHPT)的两个化学动力学机理和生物柴油替代物的三个化学动力学机理。另外,重归一化组(RNG)k-ε。 (RANS)模型与基于Smagorinsky的LES湍流模型进行了比较。使用自适应网格分辨率,对于RANS和LES情况,分别获得了250μm和125μn的最小网格大小。这些模型的验证是根据桑迪亚国家实验室在恒定体积燃烧室内的实验数据进行的。在不同的环境温度条件下进行了点火延迟和火焰剥离验证。与RNG k-E模型相比,LES模型可预测更低的点火延迟和定性更好的火焰结构。使用逼真的化学方法和由癸酸甲酯,九癸酸甲酯和NHPT组成的三元替代混合物可更好地预测LOL和点火延迟。但是,对于柴油,使用较大尺寸的机制只能观察到少量改进。但是,这些改进的预测会大大增加计算成本。

著录项

  • 来源
    《Journal of Energy Resources Technology》 |2012年第3期|p.032204.1-032204.10|共10页
  • 作者单位

    Argonne National Laboratory,Energy Systems Division,9700 S. Cass Avenue,Argonne, IL 60439;

    Argonne National Laboratory,Energy Systems Division,9700 S. Cass Avenue,Argonne, IL 60439;

    University of Connecticut,Storrs, CT 06269;

    University of Connecticut,Storrs, CT 06269;

    University of Connecticut,Storrs, CT 06269;

    Convergent Science, Inc.,Middleton, Wl 53562;

    Convergent Science, Inc.,Middleton, Wl 53562;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:29:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号