首页> 外文期刊>Journal of Energy Resources Technology >Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
【24h】

Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications

机译:混合气制备对燃气轮机分布式燃烧的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Distributed combustion is now known to provide significantly improved performance of gas turbine combustors. Key features of distributed combustion include uniform thermal field in the entire combustion chamber for significantly improved pattern factor and avoidance of hot-spot regions that promote thermal NO_x emissions, negligible emissions of hydrocarbons and soot, low noise, and reduced air cooling requirements for turbine blades. Distributed combustion requires controlled mixing between the injected air, fuel, and hot reactive gasses from within the combustor prior to mixture ignition. The mixing process impacts spontaneous ignition of the mixture to result in improved distributed combustion reactions. Distributed reactions can be achieved in premixed, partially pre-mixed, or nonpremixed modes of combustor operation with sufficient entrainment of hot and active species present in the combustion zone and their rapid turbulent mixing with the reactants. Distributed combustion With swirl is investigated here to further explore the beneficial aspects of such combustion under relevant gas turbine combustion conditions. The near term goal is to develop a high intensity combustor with ultralow emissions of NO_x and CO, and a much improved pattern factor and eventual goal of near zero emission combustor. Experimental results are reported for a cylindrical geometry combustor for different modes of fuel injection with emphasis on the resulting pollutants emission. In all the cases, air was injected tangentially to impart swirl to the flow inside the combustor. Ultra low NO_x emissions were found for both the premixed and nonpremixed combustion modes for the geometries investigated here. Results showed very low levels of NO (~10 ppm) and CO (~21 ppm) emissions under nonpremixed mode of combustion with air preheats at an equivalence ratio of 0.6 and a moderate heat release intensity of 27 MWIm~3-atm. Results are also reported on lean stability limits and OH* chemiluminescence under different fuel injection scenarios for determining the extent of distribution combustion conditions. Numerical simulations have also been performed to help develop an understanding of the mixing process for better understanding of ignition and combustion.
机译:现在已知分布式燃烧可显着改善燃气轮机燃烧器的性能。分布式燃烧的关键特征包括:整个燃烧室内均匀的热场,以显着改善模式因子,避免热点区域产生热NO_x排放,碳氢化合物和烟灰的排放可忽略不计,低噪音,以及降低涡轮叶片的空气冷却要求。分布式燃烧需要在混合气点火之前从燃烧室内部控制喷射的空气,燃料和热反应气体之间的混合。混合过程会影响混合物的自燃,从而改善分布式燃烧反应。可以在燃烧器操作的预混合,部分预混合或非预混合模式下实现分布的反应,其中要充分夹带燃烧区中存在的热和活性物质,以及它们与反应物的快速湍流混合。本文研究了带有旋流的分布式燃烧,以进一步探索在相关燃气轮机燃烧条件下这种燃烧的有益方面。近期目标是开发一种具有超低NO_x和CO排放量的高强度燃烧室,并大大提高其模式因子,最终目标是接近零排放燃烧室。据报道,采用圆柱形几何形状的燃烧器对不同的燃料喷射方式进行了实验,重点是所产生的污染物排放。在所有情况下,空气都是切向注入的,以使燃烧器内部的气流产生涡旋。对于此处研究的几何形状,预混合和非预混合燃烧模式均发现超低NO_x排放。结果表明,在非预混燃烧模式下,当空气预热当量比为0.6且中等放热强度为27 MWIm〜3-atm时,NO(〜10 ppm)和CO(〜21 ppm)的排放量非常低。还报告了在不同燃料喷射情况下稀薄稳定性极限和OH *化学发光的结果,以确定分布燃烧条件的程度。还进行了数值模拟,以帮助加深对混合过程的理解,从而更好地了解点火和燃烧。

著录项

  • 来源
    《Journal of Energy Resources Technology》 |2012年第3期|p.032201.1-032201.7|共7页
  • 作者单位

    Graduate Research Assistant,Department of Mechanical Engineering,University of Maryland,College Park, MD 20742;

    Distinguished University Professor Fellow ASME, AIM, and SAE,Department of Mechanical Engineering,University of Maryland,College Park, MD 20742;

    Department of Mechanical Engineering,Iowa State University,Ames, IA 50011;

    Department of Nano Science and Engineering,Kyungnam University,630-701, Masan, Republic of South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:29:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号