首页> 外文期刊>Journal of Energy Resources Technology >Vibration Analysis of a Drillstring in Vibration-Assisted Rotary Drilling: Finite Element Modeling With Analytical Validation
【24h】

Vibration Analysis of a Drillstring in Vibration-Assisted Rotary Drilling: Finite Element Modeling With Analytical Validation

机译:振动辅助旋转钻井中钻柱的振动分析:具有分析验证的有限元建模

获取原文
获取原文并翻译 | 示例
       

摘要

Introducing sources of axial vibration into an oilwell drillstring has the potential to improve the drilling efficiency. Vibration generator tools, such as drillstring agitators, are under development or in current use to excite the bottom-hole assembly (BHA) axi-ally in order to increase power and weight at the bit, improve the rate of penetration (ROP), reduce drillstring-wellbore friction, and accelerate the cutting removal process. Enhanced drilling under the effect of intentional imposed vibration is called "vibration-assisted rotary drilling" or VARD. While potentially enhancing the drilling process, VARD tools can also excite many unwanted vibration modes of the drillstring. These unwanted vibrations can cause fatigue damage and failure of BHA components such as "measurement while drilling" (MWD) tools, bit and mud motors, and consequently, inefficient drilling. This motivates a study of the complex dynamic behavior of an axially excited drillstring. Transverse vibration is the most destructive type of drillstring vibration, and the coupling between transverse and axial vibration of a drillstring subjected to an applied VARD force is of great interest to the experts in the field. In this study, the coupled axial-transverse vibration behavior of the entire drillstring under the effect of a VARD tool is investigated. A dynamic finite element method (FEM) model of the vertical drillstring assuming a multispan BHA is generated and validated with a coupled nonlinear axial-transverse elastodynamic mathematical model. The effects of mud damping, driving torque, multispan contact and spatially varying axial load are included. Geometry, axial stiffening and Hertzian contact forces are sources of nonlinearity in the model. A mesh sensitivity analysis is conducted to reduce computational time. The accuracy of the retained modes in the analytical equations is verified by extracting the total effective mass derived by the FEM model. There is agreement between the FEM and analytical models for coupled-transverse and axial vibration velocities, displacements, resonance frequencies and contact locations and behavior. While the analytical model has fast running time and symbolic solution, the FEM model enables easy reconfiguration of the drillstring for different boundary conditions, inclusion of additional elements such as shock subs, and changing the number and locations of stabilizers.
机译:将轴向振动源引入油井钻柱具有改善钻井效率的潜力。振动发生器工具(例如钻柱搅拌器)正在开发中或目前正在使用中,以沿轴向激励底孔组件(BHA),以增加钻头的功率和重量,提高钻速(ROP),降低钻柱与井眼的摩擦力,并加快了切削的清除过程。在有意施加的振动作用下进行的增强钻孔称为“振动辅助旋转钻孔”或VARD。虽然VARD工具可能会改善钻井过程,但它也可能激发钻柱的许多有害振动模式。这些有害的振动会导致疲劳损坏和BHA组件损坏,例如“随钻测量”(MWD)工具,钻头和泥浆马达,从而导致钻削效率低下。这激发了对轴向激励钻柱的复杂动力行为的研究。横向振动是钻柱振动的最具破坏性的类型,并且在施加VARD力的情况下,钻柱的横向和轴向振动之间的耦合引起了本领域专家的极大兴趣。在这项研究中,研究了在VARD工具的作用下整个钻柱的轴向和横向耦合振动特性。假设多跨BHA的垂直钻柱的动态有限元方法(FEM)模型已生成并通过耦合的非线性轴向-横向弹性动力学模型进行了验证。包括泥浆阻尼,驱动扭矩,多跨接触和空间变化的轴向载荷的影响。几何形状,轴向刚度和赫兹接触力是模型中非线性的来源。进行网格敏感性分析以减少计算时间。通过提取由FEM模型得出的总有效质量,可以验证解析方程中保留模式的准确性。在FEM和分析模型之间,对于横向和轴向振动速度,位移,共振频率以及接触位置和行为,存在共识。虽然分析模型具有快速的运行时间和符号解决方案,但FEM模型可以轻松地针对不同的边界条件重新配置钻柱,包括诸如冲击钻等附加元件,并更改稳定器的数量和位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号