首页> 外文期刊>Journal of Energy Resources Technology >Thermoporoelastic Analysis of Artificially Fractured Geothermal Reservoirs: A Multiphysics Problem
【24h】

Thermoporoelastic Analysis of Artificially Fractured Geothermal Reservoirs: A Multiphysics Problem

机译:人工骨折地热储层的热压塑料分析:多体问题

获取原文
获取原文并翻译 | 示例
       

摘要

Geothermal systems are identified as either open-loop system (OLGS) or closed-loop systems (CLGS). In OLGS, fluid is produced from the subsurface, while there might be a concurrent fluid injection into the reservoir. The loss of working fluid, surface subsidence, formation compaction, and induced seismicity are major challenges in OLGS. To address the indicated challenges, closed-loop geothermal systems can be considered as an alternative option. In this method, a working fluid with low-boiling point is circulated through the coaxial sealed pipes to harvest heat from the formation of rock and fluid. Induced seismicity is essentially caused by the drastic quick changes in pore pressure. Thereafter, seismic risk assessment is expected for any new geothermal technology before starting the field implementation phase. To improve the heat recovery from closed-loop wells, we suggest highly conductive hydraulic fractures for CLGS to improve the heat generation rate. In conventional hydraulic fracturing treatments, fractures facilitate fluid flow; however, in the proposed configuration, induced fractures enhance heat flux into the wellbore. Considering the multiphysics nature of CLGS, a comprehensive analysis of this problem requires simultaneous modeling of fluid flow, energy transfer (heat), and rock deformation. A thermoporoelastic model is developed in finite element methods to simulate this problem. The numerical results suggest that fractures significantly improve thermal power and cumulatively produced heat in CLGS. The thermal conductivity of the proppants is the key parameter enhancing heat generation. The level of surface subsidence in the proposed technique is negligible due to the lack of geofluid production from the reservoir. Significant numbers of abandoned oil or gas wells exist around the globe which can be converted into the geothermal wells to produce electricity. This study shows the feasibility of electricity production from CLGS with minimum environmental hazards.
机译:地热系统被识别为开环系统(OLG)或闭环系统(CLG)。在OLGS中,流体由地下产生,而可能存在于储存器中的并发流体喷射。工作流体,表面沉降,形成压实和诱导地震性的丧失是OLGS中的主要挑战。为了解决所指出的挑战,闭环地热系统可以被视为替代选项。在该方法中,具有低沸点的工作流体通过同轴密封的管道循环以从形成岩石和流体的形成来收获热量。诱导的地震性基本上由孔隙压力的激烈变化引起。此后,在开始现场实施阶段之前,预期地震风险评估预计会对任何新地热技术。为了改善闭环井的热量回收,我们建议用于CLG的高导电液压骨折以提高发热速率。在传统的液压压裂处理中,骨折促进流体流动;然而,在所提出的配置中,诱导骨折增强了热通量进入井筒。考虑到CLG的多体态性质,对该问题的综合分析需要同时建模流体流动,能量转移(热量)和岩石变形。热压塑料模型是在有限元方法中开发的,以模拟此问题。数值结果表明,裂缝显着提高了CLG中的热功率和累积的热量。支撑剂的导热率是增强发热的关键参数。由于储存器缺乏地理流体生产,所提出的技术的表面沉降水平可忽略不计。全球各地存在大量废弃的油或气井,这可以转化为地热井以产生电力。本研究表明,来自CLG的电力生产的可行性,具有最小的环境危害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号