首页> 外文期刊>Journal of control science and engineering >Indefinite LQ Optimal Control with Terminal State Constraint for Discrete-Time Uncertain Systems
【24h】

Indefinite LQ Optimal Control with Terminal State Constraint for Discrete-Time Uncertain Systems

机译:离散时间不确定系统的带有终端状态约束的不确定LQ最优控制

获取原文
获取原文并翻译 | 示例

摘要

Uncertainty theory is a branch of mathematics for modeling human uncertainty based on the normality, duality, subadditivity, and product axioms. This paper studies a discrete-time LQ optimal control with terminal state constraint, whereas the weighting matrices in the cost function are indefinite and the system states are disturbed by uncertain noises. We first transform the uncertain LQ problem into an equivalent deterministic LQ problem. Then, the main result given in this paper is the necessary condition for the constrained indefinite LQ optimal control problem by means of the Lagrangian multiplier method. Moreover, in order to guarantee the well-posedness of the indefinite LQ problem and the existence of an optimal control, a sufficient condition is presented in the paper. Finally, a numerical example is presented at the end of the paper.
机译:不确定性理论是用于基于正态性,对偶性,次可加性和乘积公理对人类不确定性建模的数学分支。本文研究了具有终端状态约束的离散时间LQ最优控制,而成本函数中的权重矩阵是不确定的,系统状态会受到不确定噪声的干扰。我们首先将不确定的LQ问题转换为等效的确定性LQ问题。然后,本文给出的主要结果是通过拉格朗日乘子法求解约束不确定LQ最优控制问题的必要条件。此外,为了保证不确定LQ问题的适定性和最优控制的存在,提出了充分的条件。最后,在本文末尾提供了一个数值示例。

著录项

  • 来源
    《Journal of control science and engineering》 |2016年第1期|7241390.1-7241390.10|共10页
  • 作者

    Yuefen Chen; Minghai Yang;

  • 作者单位

    School of Science, Nanjing University of Science and Technology, Nanjing 210094, China,College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, China;

    College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号