首页> 外文期刊>Journal of Contaminant Hydrology >High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling
【24h】

High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling

机译:浸泡,破裂的泥岩中氯代挥发性有机物的高分辨率描绘:岩心采样的深度和地层依赖性空间变异性

获取原文
获取原文并翻译 | 示例
       

摘要

Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.
机译:岩石岩心取样的综合和五个井眼的氯代挥发性有机物分析,并进行水力和水质监测以及详细的水文地质框架,以表征CVOCs在浸润,裂缝性泥岩中的精细分布。新泽西州西特伦顿市的纽瓦克盆地三叠纪时代的洛克特通组。根据这些结果,开发了一个经过完善的概念模型,用于CVOC迁移超过55年以及依赖于深度和地层的岩石基质污染。 1953年至1995年,前海军航空战中心(NAWC)对三氯乙烯(TCE)进行了工业使用,导致致密的非水相液体(DNAPL)三氯乙烯(TCE)以及三氯乙烯(TCE)和相关的分解产物(包括其他CVOC)被溶解在下层泥岩中。浅层高度风化和破裂的地层覆盖未风化的,轻度浸入的,破裂的地层,随着深度的增加,裂缝逐渐减少。未风化的岩性包括黑色的高裂缝性(易裂变)富碳地层,灰色的轻度裂缝的薄层(层状)地层和浅灰色的弱裂缝性大块地层。从浅层风化和高度破裂的地层抽出的水样中的CVOC浓度在残留DNAPL TCE附近仍保持升高,但是通过未污染补给以及其他自然和工程衰减过程进行的稀释,沿从源头和残留DNAPL去除的流动路径的浓度大大降低。在浅井源区的大多数岩心样品中也检测到了CVOC。在许多地区,与岩心浓度相比,较低的水浓度表明CVOC目前正在从岩石基质中反向扩散。在风化且高度断裂的地层以下,并且至少达到50米(m)的深度,地下水流和污染物输送主要发生在薄裂变高碳地层的层理面定向裂缝中,以及该裂隙的叠层地层中。轻轻地浸入泥石中。尽管进行了18年以上的泵送和处理(P&T)修复以及自然衰减过程,但从这些较深层抽出的水性样品中的CVOC浓度在孤立的时间间隔内仍保持升高。在27 m深度取芯期间,在一个钻孔中检测到DNAPL。与来自风化带的岩心样品相反,来自较深的未风化和未破裂地层的岩心样品中的浓度通常低于检测值。然而,在易裂变的富含黑色碳的地层和破裂的灰色层状地层的分离样品中发现了较高的CVOC浓度。通过短间隔井或长钻孔中封隔器隔离带从这些地层抽出的样品中的水相浓度相应较高。完善的概念性场地模型认为,在进行P&T修复之前,地下水流主要位于近地层较高渗透率的近水平区域,且污染物总量很大。 CVOCs扩散到这些破裂和风化的泥岩中。 DNAPL和高浓度的CVOCs在较深的未风化地层中缓慢向下迁移,主要是沿着孤立的倾覆层-平面裂缝。自1995年P&T开始使用井眼向浅层和深层开放以来,溶解的CVOC的向下输送加速了。 TCE和其他CVOC从较深裂缝中的扩散仅渗透了几厘米到未风化的岩石基质中,这可能是由于CVOC在岩石有机碳上的吸附所致。 CVOC迁移到岩石基质中相对有限,可能会受益于未风化深层的修复。利用地球物理测井和水力测试从近距离钻孔中进行岩心采样的综合,可增进对CVOC轮廓控制的了解,并为补救设计和监测提供信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号