首页> 外文期刊>Journal of Contaminant Hydrology >Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate
【24h】

Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate

机译:高锰酸钾无缓冲三氯乙烯氧化后饱和硅砂中体积电导率变化的来源分析

获取原文
获取原文并翻译 | 示例
       

摘要

Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8 mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3 h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions.
机译:延时电阻率调查可能会通过跟踪注入高锰酸盐和污染物氧化而导致的地下电导率变化,从而潜在地改善对有机污染物(如三氯乙烯(TCE))的高锰酸盐基原位化学氧化(ISCO)的监控。通过实验室测量和使用PHREEQC对含硅砂的流体样品和多孔介质样品中的电导率建模,通过实验室测量和电导率建模,检查了使用高锰酸盐进行无缓冲TCE氧化期间的体积电导率和孔隙流体电导率变化。在流体样品中,一个TCE分子的氧化产生三个氯离子和一个质子,尽管在反应中损失了两个高锰酸根离子,但导致流体电导率增加。然而,在饱和的砂土样品中,TCE被氧化高达8 mM,与质子存在相关的至少94%的流体传导性在与砂土接触的3小时内被去除,最有可能是通过表面上发现的硅烷醇基的质子化的沙粒。还观察到了最可能与pH依赖的二氧化锰还原溶解有关的较小电导率效应,但未在孔隙-流体电导率模型中解释。无法解释的电导率影响导致反应后孔隙流体电导率的计算不足,为2.1%至5.5%。尽管检测到由二氧化锰沉淀引起的多孔介质形成因子的小幅增加(约3%),但仍不能确定这些增加具有统计学意义。高锰酸盐的注入和TCE的氧化都会引起体积电导率的增加,这可以通过现场条件下的延时电阻率调查来检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号