首页> 外文期刊>Journal of Contaminant Hydrology >Virus-sized colloid transport in a single pore: Model development and sensitivity analysis
【24h】

Virus-sized colloid transport in a single pore: Model development and sensitivity analysis

机译:病毒大小的胶体在单个孔中的运输:模型开发和敏感性分析

获取原文
获取原文并翻译 | 示例
       

摘要

A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (ⅰ) decreasing magnitude and ratio of surface potentials on colloid and collector, (ⅱ) increasing ionic strength and (ⅲ) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe = 0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100 nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if the conditions are favorable for adsorption. The results agree qualitatively with the column-scale experimental observations available in the literature. The current model forms the building block in upscaling colloid transport from pore scale to Darcy scale using Pore-Network Modeling.
机译:考虑到对流,扩散,胶体-收集器表面相互作用和流体动力壁效应等各种过程,建立了数学模型来模拟病毒大小的胶体在圆柱孔喉中的运输和沉积。基于作用在每个区域中的主导过程,将孔隙空间划分为三个不同的区域,即体积,扩散和潜在区域。在主体区域,胶体的运输受平流和扩散控制,而在扩散区域,由于扩散引起的胶体迁移受到流体动力壁效应的阻碍。在发生胶体沉积的潜在区域中,胶体-收集器相互作用力占主导地位。控制方程是无量纲的,可以用数值方法求解。敏感性分析表明,病毒大小的胶体的运输和沉积受各种孔尺度参数的显着影响,例如,胶体和收集器上的表面电势,溶液的离子强度,流速,孔径和胶体大小。吸附的浓度,以及因此表面的吸附性随以下因素增加:(ⅰ)胶体和集电体上表面电势的大小和比例降低,(ⅱ)离子强度增加,(ⅲ)孔半径增加。吸附浓度随Pe的增加而增加,在Pe = 0.1时达到最大值,然后降低。同样,胶体尺寸显着影响颗粒沉积,其吸附浓度随颗粒半径的增加而增加,在100 nm的颗粒半径处达到最大值,然后随半径的增加而减小。发现系统流体动力学对大颗粒的影响大于对小颗粒的影响。随着对表面的吸附性降低,对颗粒沉积的次要最小贡献增加。如果条件有利于吸附,则模型对给定参数的敏感性将很高。结果与文献中的柱级实验观察结果在质量上吻合。当前模型是使用孔网络模型将胶体从孔隙尺度迁移到达西尺度的过程中的基础。

著录项

  • 来源
    《Journal of Contaminant Hydrology》 |2014年第8期|163-180|共18页
  • 作者单位

    Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India;

    Department of Civil Engineering, IFCWS, Indian Institute of Science, Bangalore 560012, India;

    Department of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands;

    Department of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Virus transport; Colloids; Pore-scale; Adsorption; Porous media; Hydrodynamics;

    机译:病毒运输;胶体;孔径吸附;多孔介质流体力学;
  • 入库时间 2022-08-17 13:40:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号