首页> 外文期刊>Journal of computer sciences >WEEDS IDENTIFICATION USING EVOLUTIONARY ARTIFICIAL INTELLIGENCE ALGORITHM
【24h】

WEEDS IDENTIFICATION USING EVOLUTIONARY ARTIFICIAL INTELLIGENCE ALGORITHM

机译:进化人工智能算法识别杂草

获取原文
获取原文并翻译 | 示例

摘要

In a world reached a population of six billion humans increasingly demand it for food, feed with a water shortage and the decline of agricultural land and the deterioration of the climate needs 1.5 billion hectares of agricultural land and in case of failure to combat pests needs about 4 billion hectares. Weeds represent 34% of the whole pests while insects, diseases and the deterioration of agricultural land present the remaining percentage. Weeds Identification has been one of the most interesting classification problems for Artificial Intelligence (AI) and image processing. The most common case is to identify weeds within the field as they reduce the productivity and harm the existing crops. Success in this area results in an increased productivity, profitability and at the same time decreases the cost of operation. On the other hand, when AI algorithms combined with appropriate imagery tools may present the right solution to the weed identification problem. In this study, we introduce an evolutionary artificial neural network to minimize the time of classification training and minimize the error through the optimization of the neuron parameters by means of a genetic algorithm. The genetic algorithm, with its global search capability, finds the optimum histogram vectors used for network training and target testing through a fitness measure that reflects the result accuracy and avoids the trial-and-error process of estimating the network inputs according to the histogram data.
机译:在世界上有60亿人口,越来越多的人需要食物,饲料,缺水,农业用地减少和气候恶化,需要15亿公顷农业用地,如果无法抵抗病虫害, 40亿公顷。杂草占全部害虫的34%,而昆虫,疾病和农田的退化则占剩余的百分比。杂草识别一直是人工智能(AI)和图像处理中最有趣的分类问题之一。最常见的情况是在田间发现杂草,因为它们会降低生产力并损害现有作物。在这一领域的成功将提高生产率,盈利能力,同时降低运营成本。另一方面,当AI算法与适当的图像工具结合使用时,可以为杂草识别问题提供正确的解决方案。在这项研究中,我们介绍了一种进化的人工神经网络,以通过遗传算法优化神经元参数,从而最大程度地减少分类训练的时间,并最大程度地减少错误。遗传算法具有全局搜索功能,可通过适应性度量找到用于网络训练和目标测试的最佳直方图向量,该适应性度量可反映结果的准确性,并且避免了根据直方图数据估算网络输入的反复试验过程。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号