首页> 外文期刊>Journal of computer sciences >SPLINE ACTIVATED NEURAL NETWORK FOR CLASSIFYING CARDIAC ARRHYTHMIA
【24h】

SPLINE ACTIVATED NEURAL NETWORK FOR CLASSIFYING CARDIAC ARRHYTHMIA

机译:样条激活神经网​​络对心律失常的分类

获取原文
获取原文并翻译 | 示例

摘要

Electro Cardiogram's (ECG) biomedical signals characterizing cardiac anomalies are used for identifying cardiac arrhythmia. Irregular heartbeat-Arrhythmia-affects heart rate causing problems. Many methods, trying to simplify arrhythmia monitoring through automated detection, were developed over the years. ECG classification for arrhythmia is investigated in this paper based on soft computing techniques. RR interval are extracted from time series of the ECG and used as feature for arrhythmia classification. Frequency domain extracted features are classified using Radial Basis Function (RBF) and proposed Spline Activated-Feed Forward Neural Network (SA-FFNN). Experiments were conducted with the Massachusetts Institute of Technology-Boston's Beth Israel Hospital (MIT-BIH) arrhythmia database for evaluating the proposed methods.
机译:表征心脏异常的心电图(ECG)生物医学信号用于识别心律不齐。心律不齐-心律不齐影响心律,引起问题。这些年来,人们开发了许多方法来尝试通过自动检测来简化心律失常监测。本文基于软计算技术研究了心律失常的ECG分类。 RR间隔从心电图的时间序列中提取,并用作心律失常分类的特征。使用径向基函数(RBF)和提出的样条激活前馈神经网络(SA-FFNN)对频域提取的特征进行分类。实验是在麻省理工学院波士顿贝斯以色列医院(MIT-BIH)心律失常数据库中进行的,用于评估所建议的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号