首页> 外文期刊>Journal of computational science >A privacy-preserving mobile application recommender system based on trust evaluation
【24h】

A privacy-preserving mobile application recommender system based on trust evaluation

机译:基于信任评估的隐私保护移动应用推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Too many mobile applications in App stores results in information overload in App market. Mobile users are confused in choosing suitable and trustworthy mobile applications due to a large number of available candidates. A mobile application recommender system is a powerful tool that helps users solve this problem. However, there are few feasible recommender systems focusing on recommending mobile applications in the literature. First, few researches study user trust behavior based recommendation on mobile applications. Second, the accuracy and personalization of existing recommender systems need to be further improved. Particularly, privacy preservation is still an open issue in mobile application recommendation. In this paper, we propose two privacy-preserving mobile application recommendation schemes based on trust evaluation. Recommendations on mobile application are generated based on user trust behaviors of mobile application usage. In these two schemes, user private data can be preserved by applying our proposed security protocols and utilizing homomorphic encryption. We further implement two schemes and develop two mobile Apps that can be applied in different scenarios, i.e., a centralized cloud service and distributed social networking. Security analysis, performance evaluation and simulation results show that our schemes have sound security, efficiency, accuracy, and robustness. (C) 2018 The Authors. Published by Elsevier B.V.
机译:App商店中的移动应用程序太多,导致App市场中的信息过载。由于大量可用候选人,移动用户在选择合适且值得信赖的移动应用程序时感到困惑。移动应用程序推荐系统是一个功能强大的工具,可以帮助用户解决此问题。然而,在文献中很少有可行的推荐器系统专注于推荐移动应用。首先,很少有研究研究基于移动应用推荐的用户信任行为。其次,现有推荐系统的准确性和个性化需要进一步提高。特别是,隐私保护仍然是移动应用程序推荐中的未解决问题。在本文中,我们提出了两种基于信任评估的隐私保护移动应用推荐方案。有关移动应用程序的建议是基于移动应用程序使用情况的用户信任行为生成的。在这两种方案中,可以通过应用我们提出的安全协议并利用同态加密来保留用户私有数据。我们进一步实施了两种方案并开发了两个可在不同情况下应用的移动应用程序,即集中式云服务和分布式社交网络。安全分析,性能评估和仿真结果表明,我们的方案具有良好的安全性,效率,准确性和鲁棒性。 (C)2018作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号